A recursive function is a function that is defined in terms of itself. A good example is the factorial function. Consider this example:

```python
def factorial(n):
    if n == 0 or n == 1:
        return 1
    else:
        return n * factorial(n - 1)
```

Although we haven’t finished defining factorial, we are still able to call it since the function body is not evaluated until the function is called. Note that when \(n \) is 0 or 1, we just return 1. This is known as the base case, and it prevents the function from infinitely recursing. Now we can compute \(\text{factorial}(2) \) in terms of \(\text{factorial}(1) \), and \(\text{factorial}(3) \) in terms of \(\text{factorial}(2) \), and \(\text{factorial}(4) \) – well, you get the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: The base case is usually the simplest input possible to the function. For example, \(\text{factorial}(0) \) is 1 by definition. You can also think of a base case as a stopping condition for the recursion. If you can’t figure this out right away, move on to the recursive case and try to figure out the point at which we can’t reduce the problem any further.

2. Make a recursive call with a simpler argument: Simplify your problem, and assume that a recursive call for this new problem will simply work. This is called the “leap of faith”. For \(\text{factorial} \), we reduce the problem by calling \(\text{factorial}(n-1) \).
3. **Use your recursive call to solve the full problem**: Remember that we are assuming the recursive call works. With the result of the recursive call, how can you solve the original problem you were asked? For factorial, we just multiply \((n - 1)!\) by \(n\).

Note: One way to understand recursion is to separate out two things: “internal correctness” and not running forever (known as “halting”).

A recursive function is internally correct if it is always does the right thing assuming that every recursive call does the right thing. For example, the same factorial function from above but with no base case is internally correct, but does not halt.

A recursive function is correct if and only if it is both internally correct and halts; but you can check each property separately. The “recursive leap of faith” is temporarily placing yourself in a mindset where you only check internal correctness.

1.1 Questions

1. Write a recursive function that takes in an integer \(n\) and prints out a countdown from \(n\) to 1.

 First, think about a base case for the `countdown` function. What is the simplest input the problem could be given?

 Solution: When \(n\) equals 0

 After you’ve thought of a base case, think about a recursive call with a smaller argument that approaches the base case. What happens if you call `countdown(n - 1)`?

 Solution: A countdown starting from \(n - 1\) is printed.

 Then, put the base case and the recursive call together, and think about where a print statement would be needed.

   ```python
   def countdown(n):
       """
       >>> countdown(3)
       3
       2
       1
       """

   Solution:
   ```python
 if n <= 0:
 return
 print(n)
 countdown(n - 1)
   ```

   [Video walkthrough](#)
2. How can we change \texttt{countdown} to count up instead without modifying a lot of the code?

\textbf{Solution:} Move the \texttt{print} statement to after the recursive call.

\textit{Video walkthrough}

3. Write a procedure \texttt{expt(base, power)}, which implements the exponent function. For example, \texttt{expt(3, 2)} returns 9, and \texttt{expt(2, 3)} returns 8. Assume \texttt{power} is always a non-negative integer. Use recursion, not \texttt{pow}!

\begin{verbatim}
def expt(base, power):
    if power == 0:
        return 1
    else:
        return expt(base, power - 1) * base
\end{verbatim}
4. Write a recursive function that takes a number \( n \) and returns the sum of every other digit, starting from the rightmost digit. Assume \( n \) is non-negative.

You might find the operators // and % useful.

```python
def sum_every_other_digit(n):
 ""
 >>> sum_every_other_digit(7)
 7
 >>> sum_every_other_digit(30)
 0
 >>> sum_every_other_digit(228)
 10
 >>> sum_every_other_digit(123456)
 12
 >>> sum_every_other_digit(1234567) # 1 + 3 + 5 + 7
 16
 ""
 Solution:
 if n == 0:
 return 0
 else:
 return n % 10 + sum_every_other_digit(n // 100)
```
5. Remember map? Given a list of elements and a function, we want to return a list with the function applied to each element. Let’s write it recursively!

```python
def map(fn, seq):
 if seq == []:
 return []
 return [fn(seq[0])] + map(fn, seq[1:])
```

(Extra Challenge: Try to write a mutation version! i.e. Don’t return a list and apply map by altering the original list.)

```python
def map(fn, lst):
 if lst: # True when lst != []
 temp = lst.pop(0)
 map(fn, lst)
 lst.insert(0, fn(temp))
```
6. Below is the iterative version of `is_prime`, which returns `True` if positive integer `n` is a prime number and `False` otherwise:

```python
def is_prime(n):
 if n == 1:
 return False
 k = 2
 while k < n:
 if n % k == 0:
 return False
 k += 1
 return True
```

Implement the recursive `is_prime` function. Do not use a while loop, use recursion. As a reminder, an integer is considered prime if it has exactly two unique factors: 1 and itself.

```python
def is_prime(n):
 ""
 >>> is_prime(7)
 True
 >>> is_prime(10)
 False
 >>> is_prime(1)
 False
 ""
 def prime_helper(____________________):
 if __________________________:

 elif __________________________:

 else:

 return __________________________
```
Solution:

```python
def prime_helper(index):
 if index == n:
 return True
 elif n % index == 0 or n == 1:
 return False
 else:
 return prime_helper(index + 1)
return prime_helper(2)
```

**Note:** The goal of this question was to demonstrate how to use a helper function, as well as how to translate between iteration and recursion.