
LAMBDAS, DICTIONARIES, AND ABSTRACT DATA

TYPES 4
COMPUTER SCIENCE 88

February 17, 2021

1 Lambdas

Lambda expressions are one-line functions that specify two things: the parameters and
the return expression.

A lambda expression that takes in no arguments and returns 8:

lambda: 8︸︷︷︸
return value

A lambda expression that takes two arguments and returns their product:

lambda x, y︸ ︷︷ ︸
parameters

: x * y︸ ︷︷ ︸
return expression

Unlike functions created by a def statement, the function object that a lambda expression
creates has no intrinsic name and is not bound to any variable. In fact, nothing changes in
the current environment when we evaluate a lambda expression unless we do something
with this expression, such as assign it to a variable or pass it as an argument to a higher
order function.

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 2
1. What would Python print?
>>> a = lambda: 5
>>> a()

Solution:
5

>>> a(5)

Solution:
TypeError: <lambda>() takes 0 positional arguments but 1

was given

>>> b = lambda: lambda x: 3
>>> b()(15)

Solution:
3

>>> c = lambda x, y: x + y
>>> c(4, 5)

Solution:
9

>>> d = lambda x: lambda y: x * y
>>> d(3)

Solution:
<function ...>

>>> d(3)(3)

Solution:
9

>>> e = d(2)
>>> e(5)

CS 88 Spring 2021

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 3

Solution:
10

>>> f = lambda: print(1)

Solution:
No output

>>> g = f()

Solution:
1

CS 88 Spring 2021

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 4

2 Dictionaries

Dictionaries are data structures which map keys to values. Dictionaries in Python are
unordered, unlike real-world dictionaries — in other words, key-value pairs are not ar-
ranged in the dictionary in any particular order. Let’s look at an example:
>>> pokemon = {'pikachu': 25, 'dragonair': 148, 'mew': 151}
>>> pokemon['pikachu']
25
>>> pokemon['jolteon'] = 135
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148, 'mew': 151}
>>> pokemon['ditto'] = 25
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148,
'ditto': 25, 'mew': 151}

The keys of a dictionary can be any immutable value, such as numbers, strings, and tuples.1

Dictionaries themselves are mutable; we can add, remove, and change entries after cre-
ation. There is only one value per key, however — if we assign a new value to the same
key, it overrides any previous value which might have existed.

To access the value of dictionary at key, use the syntax dictionary[key].

Element selection and reassignment work similarly to sequences, except the square brack-
ets contain the key, not an index.

• To add val corresponding to key or to replace the current value of key with val:
dictionary[key] = val

• To iterate over a dictionary’s keys:
for key in dictionary: #OR for key in dictionary.keys()

do_stuff()

• To iterate over a dictionary’s values:
for value in dictionary.values():

do_stuff()

• To iterate over a dictionary’s keys and values:
for key, value in dictionary.items():

do_stuff()

• To remove an entry in a dictionary:
del dictionary[key]

• To get the value corresponding to key and remove the entry:
1To be exact, keys must be hashable, which is out of scope for this course. This means that some mutable objects, such as classes,

can be used as dictionary keys.

CS 88 Spring 2021

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 5
dictionary.pop(key)

2.1 Questions

1. What would Python display?
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148, 'ditto': 25,

'mew': 151}

>>> 'mewtwo'in pokemon

Solution: False

>>> len(pokemon)

Solution: 5

>>> pokemon['ditto'] = pokemon['jolteon']
>>> pokemon[('diglett', 'diglett', 'diglett')] = 51
>>> pokemon[25] = 'pikachu'
>>> pokemon

Solution:
{'mew': 151, 'ditto': 135, 'jolteon': 135, 25: 'pikachu',
'pikachu': 25, ('diglett', 'diglett', 'diglett'): 51,
'dragonair': 148}

>>> pokemon['mewtwo'] = pokemon['mew'] * 2
>>> pokemon

Solution:
{'mew': 151, 'ditto': 135, 'jolteon': 135, 25: 'pikachu',
'pikachu': 25, ('diglett', 'diglett', 'diglett'): 51,
'mewtwo': 302, 'dragonair': 148}

>>> pokemon[['firetype', 'flying']] = 146

Solution: Error: unhashable type

Note that the last example demonstrates that dictionaries cannot use other mutable
data structures as keys. However, dictionaries can be arbitrarily deep, meaning the
values of a dictionary can be themselves dictionaries.

CS 88 Spring 2021

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 6
2. Given a (non-nested) dictionary d, write a function which deletes all occurrences of x

as a value. You cannot delete items in a dictionary as you are iterating through it.
def remove_all(d, x):

"""
>>> d = {1:2, 2:3, 3:2, 4:3}
>>> remove_all(d, 2)
>>> d
{2: 3, 4: 3}
"""

Solution:
keys_to_delete = [key for key in d if d[key] == x]
for key in keys_to_delete:

del d[key]

CS 88 Spring 2021

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 7

3 Abstract Data Types

Data abstraction is a powerful concept in computer science that allows programmers to
treat code as objects — for example, car objects, chair objects, people objects, etc. That
way, programmers don’t have to worry about how code is implemented — they just have
to know what it does.

Data abstraction mimics how we think about the world. For example, when you want to
drive a car, you don’t need to know how the engine was built or what kind of material the
tires are made of. You just have to know how to turn the wheel and press the gas pedal.

An abstract data type consists of two types of functions:

• Constructors: functions that build the abstract data type.

• Selectors: functions that retrieve information from the data type.

For example, say we have an abstract data type called city. This city object will hold
the city’s name, and its latitude and longitude. To create a city object, you’d use a
constructor like
city = make_city(name, lat, lon)

To extract the information of a city object, you would use the selectors like
get_name(city)
get_lat(city)
get_lon(city)

For example, here is how we would use the make city constructor to create a city object
to represent Berkeley and the selectors to access its information.
>>> berkeley = make_city('Berkeley', 122, 37)
>>> get_name(berkeley)
'Berkeley'
>>> get_lat(berkeley)
122
>>> get_lon(berkeley)
37

The following code will compute the distance between two city objects:
from math import sqrt
def distance(city_1, city_2):

lat_1, lon_1 = get_lat(city_1), get_lon(city_1)
lat_2, lon_2 = get_lat(city_2), get_lon(city_2)

return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

CS 88 Spring 2021

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 8
Notice that we don’t need to know how these functions were implemented. We are as-
suming that someone else has defined them for us.

It’s okay if the end user doesn’t know how functions were implemented. However, the
functions still have to be defined by someone. We’ll look into defining the constructors
and selectors later in this discussion. Notice how we did not need to know how the con-
structors and selectors in the previous section were implemented in order to use them.
This is what we mean by the implementation and use of an abstract data type being sepa-
rate. In fact, you should never assume anything about how the constructors and selectors
for an abstract data type are implemented. Doing so is called a data abstraction violation.

As an example, here is one implemenation for the rational constructor.
def rational(n, d):

return [n, d]

Given this constructor, the following would be considered a data abstraction violation:
>>> frac1 = rational(3, 4)
>>> frac2 = rational(5, 6)
>>> frac1[0] * frac2[0]
15

This is because we assumed rationals were represented as lists instead of accessing their
elements using the selectors.

3.1 Questions

1. The CS 88 TAs have decided to call upon the power of data abstraction to organize
their discussion sections. To do so, they’ve created a discussion abstract data type.
A discussion contains three things:

• The name of the TA running the section

• The time the section starts, given as an integer

• A list of students enrolled in the section

Given this, the TAs come up with the following constructor and selectors:

• make discussion(ta, time, students): Creates and returns a new dis-
cussion section.

• get ta(disc): Returns the TA running the given discussion section.

• get time(disc): Returns the start time of the given discussion section.

• get students(disc): Returns the list of students enrolled in the given discus-
sion section.

The TAs have decided to reveal the implementation of the discussion section ADT.
Use these function definitions to answer the next two questions:

CS 88 Spring 2021

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 9
def make_discussion(ta, time, students):

return [name, time, students]

def get_ta(disc):
return disc[0]

def get_time(disc):
return disc[1]

def get_students(disc):
return disc[2]

2. Implement add student, which takes in a discussion section and a string represent-
ing a student’s name, and returns a new discussion with the new student added to
the roster. The list of students for the new discussion should be a new list. Remember
to use the constructor and selectors!
def add_student(disc, student):

""" Adds a student to this discussion.
>>> disc = make_discussion("Alex", 4, ["Srinath", "Brian

"])
>>> new_disc = add_student(disc, "Sophia")
>>> get_students(new_disc)
["Srinath", "Brian", "Sophia"]
>>> get_students(disc)
["Srinath", "Brian"]
"""

Solution:
new_students = get_students(disc) + [student]
ta = get_ta(disc)
time = get_time(disc)
return make_discussion(ta, time, new_students)

CS 88 Spring 2021

DISCUSSION 4: LAMBDAS, DICTIONARIES, AND ABSTRACT DATA TYPES Page 10
3. A disgruntled student makes changes to the discussion data abstraction in an attempt

to disrupt the TAs’ ability to run section. The new implementation is as follows:
def make_discussion(ta, time, students):

return {"ta" : ta, "time" : time, "students" : students}

def get_ta(disc):
return disc["ta"]

def get_time(disc):
return disc["time"]

def get_students(disc):
return disc["students"]

Would the code in the previous question, with the corrections you made, still work
with these changes? Would the code before removing abstraction violations still
work?

Solution: After removing the abstraction violations, the code will work correctly.
This is because we don’t assume anything about the representation of a discussion
object, so changing the representation doesn’t affect anything.

Before, with abstraction violations, our code will no longer work correctly. When
we try to index into a discussion as if it is a list, we will get an error, since it is now
implemented as a dictionary.

CS 88 Spring 2021

