Lecture #18: Efficiency
Computing In The News

• Supreme Court rules in Google’s favor in copyright dispute with Oracle over Android software

Announcements

 - Dept Reporting for culture issues, feedback, etc.
 - Anonymous if desired.
- Ants Proj out soon!
Learning Objectives

• Runtime Analysis:
 - How long will my program take to run?
 - Why can’t we just use a clock?
 - How can we simplify understanding computation in an algorithm

• Enjoy this stuff? Take 61B!

• Find it challenging? Don’t worry! It’s a different way of thinking.
Efficiency is all about trade-offs

• Running Code: Takes Time, Requires Memory
 - More efficient code takes less time or uses less memory
• Any computation we do, requires both time and “space” on our computer.
• Writing efficient code is not obvious
 - Sometimes it is even convoluted!
• But!
• We need a framework before we can optimize code
• Today, we’re going to focus on the time component.
Is this code fast?

• Most code doesn’t *really* need to be fast! Computers, even your phones are already amazingly fast!

• Sometimes…it does matter!
 - Lots of data
 - Small hardware
 - Complex processes

• Slow code takes up battery power
Runtime analysis problem & solution

• Time w/stopwatch, but...
 - Different computers may have different runtimes. 😞
 - Same computer may have different runtime on the same input. 😞
 - Need to implement the algorithm first to run it. 😞

• Solution: Count the number of “steps” involved, not time!
 - Each operation = 1 step
 » 1 + 2 is one step
 » lst[5] is one step
 - When we say “runtime”, we’ll mean # of steps, not time!
Runtime: input size & efficiency

• Definition:
 - Input size: the # of things in the input.
 - e.g. length of a list, the number of iterations in a loop.
 - Running time as a function of input size
 - Measures efficiency

• Important!
 - In CS88 we won’t care about the efficiency of your solutions!
 - ...in CS61B we will
Runtime analysis: worst or average case?

- Could use avg case
 - Average running time over a vast # of inputs
- Instead: use worst case
 - Consider running time as input grows
- Why?
 - Nice to know most time we’d ever spend
 - Worst case happens often
 - Avg is often ~ worst
- Often called “Big O” for “order”
 - $O(1)$, $O(n)$ …
Runtime analysis: Final abstraction

• Instead of an exact number of operations we’ll use abstraction
 - Want order of growth, or dominant term
• In CS88 we’ll consider
 - Constant
 - Logarithmic
 - Linear
 - Quadratic
 - Exponential
• E.g. $10n^2 + 4 \log n + n$
 – ...is quadratic
Example: Finding a student (by ID)

• Input
 - Unsorted list of students L
 - Find student S

• Output
 - True if S is in L, else False

• Pseudocode Algorithm
 - Go through one by one, checking for match.
 - If match, true
 - If exhausted L and didn’t find S, false

• Worst-case running time as function of the size of L?
 1. Constant
 2. Logarithmic
 3. Linear
 4. Quadratic
 5. Exponential
Example: Finding a student (by ID)

• Input
 - Sorted list of students L
 - Find student S

• Output: same

• Pseudocode Algorithm
 - Start in middle
 - If match, report true
 - If exhausted, throw away half of L and check again in the middle of remaining part of L
 - If nobody left, report false

• Worst-case running time as function of the size of L?
 1. Constant
 2. Logarithmic
 3. Linear
 4. Quadratic
 5. Exponential
Computational Patterns

• If the number of steps to solve a problem is always the same → Constant time: $O(1)$
• If the number of steps increases similarly for each larger input → Linear Time: $O(n)$
 – Most commonly: for each item
• If the number of steps increases by some a factor of the input → Quadratic Time: $O(n^2)$
 – Most commonly: Nested for Loops
• Two harder cases:
 – Logarithmic Time: $O(\log n)$
 » We can double our input with only one more level of work
 » Dividing data in “half” (or thirds, etc)
 – Exponential Time: $O(2^n)$
 » For each bigger input we have 2x the amount of work!
 » Certain forms of Tree Recursion
Comparing Fibonacci

```python
def iter_fib(n):
    x, y = 0, 1
    for _ in range(n):
        x, y = y, x+y
    return x

def fib(n):  # Recursive
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)
```
Tree Recursion

- \(\text{Fib}(4) \rightarrow 9 \text{ Calls} \)
- \(\text{Fib}(5) \rightarrow 16 \text{ Calls} \)
- \(\text{Fib}(6) \rightarrow 26 \text{ Calls} \)
- \(\text{Fib}(7) \rightarrow 43 \text{ Calls} \)
- \(\text{Fib}(20) \rightarrow \)
What next?

• Understanding *algorithmic complexity* helps us know whether something is possible to solve.
• Gives us a formal reason for understanding why a program might be slow.
• This is only the beginning:
 – We’ve only talked about time complexity, but there is *space complexity*.
 – In other words: How much memory does my program require?
 – Often you can trade time for space and vice-versa.
 – Tools like “caching” and “memorization” do this.

• If you think this is cool take CS61B!