
LAMBDAS AND DICTIONARIES 4
DATA C88C

Februrary 12, 2024

1 Lambdas

Lambda expressions are one-line functions that specify two things: the parameters and
the return expression.

A lambda expression that takes in no arguments and returns 8:

lambda: 8︸︷︷︸
return value

A lambda expression that takes two arguments and returns their product:

lambda x, y︸ ︷︷ ︸
parameters

: x * y︸ ︷︷ ︸
return expression

Unlike functions created by a def statement, the function object that a lambda expression
creates has no intrinsic name and is not bound to any variable. In fact, nothing changes in
the current environment when we evaluate a lambda expression unless we do something
with this expression, such as assign it to a variable or pass it as an argument to a higher
order function.



DISCUSSION 4: LAMBDAS AND DICTIONARIES Page 2
1. What would Python print?
>>> a = lambda: 5
>>> a()

>>> a(5)

>>> b = lambda: lambda x: 3
>>> b()(15)

>>> c = lambda x, y: x + y
>>> c(4, 5)

>>> d = lambda x: lambda y: x * y
>>> d(3)

>>> d(3)(3)

>>> e = d(2)
>>> e(5)

>>> f = lambda: print(1)

>>> g = f()

>>> g

Data C88C Spring 2024



DISCUSSION 4: LAMBDAS AND DICTIONARIES Page 3

2 Environment Diagrams

1. Draw the environment diagram for evaluating the following code
def mystery_a(lst):

def mystery_b(color, count):
lst.extend([color] * count)

return mystery_b

colors = ["purple", "pink", "brown"]
f = mystery_a(colors)
f("red", 3)
f("blue", 1)

2. If on line 2 and line 4, we replace mystery b with mystery a, what will change in
the environment diagram, if anything?

3. If on line 3, we change lst.extend([color] * count) to lst.append([color]
* count), what will change, if anything?

Data C88C Spring 2024



DISCUSSION 4: LAMBDAS AND DICTIONARIES Page 4
4. Draw the environment diagram for evaluating the following code
def ross(geller, num):

return geller(monica(num))

def monica(num):
if num >= 2:

return tup[0]
return tup[num]

f = lambda x: x[-1] == "a"
tup = ("hola", "there")
rachel = ross(f, 5)

Data C88C Spring 2024



DISCUSSION 4: LAMBDAS AND DICTIONARIES Page 5
5. Draw the environment diagram for evaluating the following code
def anna(olaf):

return lambda a, b: olaf or [a] * b

hans = [1]
elsa = anna(hans.append(4))
kristoff = elsa(3, 4)

Data C88C Spring 2024



DISCUSSION 4: LAMBDAS AND DICTIONARIES Page 6

3 Dictionaries

Dictionaries are data structures which map keys to values. Dictionaries in Python are
unordered, unlike real-world dictionaries — in other words, key-value pairs are not ar-
ranged in the dictionary in any particular order. Let’s look at an example:
>>> pokemon = {'pikachu': 25, 'dragonair': 148, 'mew': 151}
>>> pokemon['pikachu']
25
>>> pokemon['jolteon'] = 135
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148, 'mew': 151}
>>> pokemon['ditto'] = 25
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148,
'ditto': 25, 'mew': 151}
>>> pokemon['mew'] = 15
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148,
'ditto': 25, 'mew': 15}

The keys of a dictionary can be any immutable value, such as numbers, strings, and tuples.1

Dictionaries themselves are mutable; we can add, remove, and change entries after cre-
ation. There is only one value per key, however — if we assign a new value to the same
key, it overrides any previous value which might have existed.

To access the value of dictionary at key, use the syntax dictionary[key].

Element selection and reassignment work similarly to sequences, except the square brack-
ets contain the key, not an index.

• To add val corresponding to key or to replace the current value of key with val:
dictionary[key] = val

• To iterate over a dictionary’s keys:
for key in dictionary: #OR for key in dictionary.keys()

do_stuff()

• To iterate over a dictionary’s values:
for value in dictionary.values():

do_stuff()

1To be exact, keys must be hashable, which is out of scope for this course. This means that some mutable objects, such as classes,
can be used as dictionary keys.

Data C88C Spring 2024



DISCUSSION 4: LAMBDAS AND DICTIONARIES Page 7
• To iterate over a dictionary’s keys and values:

for key, value in dictionary.items():
do_stuff()

• To remove an entry in a dictionary:
del dictionary[key]

• To get the value corresponding to key and remove the entry:
dictionary.pop(key)

3.1 Questions

1. What would Python display?
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148, 'ditto': 25,

'mew': 151}

>>> 'mewtwo'in pokemon

>>> len(pokemon)

>>> pokemon['ditto'] = pokemon['jolteon']
>>> pokemon[('diglett', 'diglett', 'diglett')] = 51
>>> pokemon[25] = 'pikachu'
>>> pokemon

>>> pokemon['mewtwo'] = pokemon['mew'] * 2
>>> pokemon

>>> pokemon[['firetype', 'flying']] = 146

Note that the last example demonstrates that dictionaries cannot use other mutable
data structures as keys. However, dictionaries can be arbitrarily deep, meaning the
values of a dictionary can be themselves dictionaries.

Data C88C Spring 2024



DISCUSSION 4: LAMBDAS AND DICTIONARIES Page 8
2. Write a function that takes in a sequence s and a function fn and returns a dictionary.

The values of the dictionary are lists of elements from s. Each element e in a list
should be constructed such that fn(e) is the same for all elements in that list. Finally,
the key for each value should be fn(e).
def group_by(s, fn):

"""
>>> group_by([12, 23, 14, 45], lambda p: p // 10)
{1: [12, 14], 2: [23], 4: [45]}
>>> group_by(range(-3, 4), lambda x: x * x)
{0: [0], 1: [-1, 1], 4: [-2, 2], 9: [-3, 3]}
"""

Data C88C Spring 2024


