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1 Lambdas

Lambda expressions are one-line functions that specify two things: the parameters and
the return expression.

A lambda expression that takes in no arguments and returns 8:

lambda: 8︸︷︷︸
return value

A lambda expression that takes two arguments and returns their product:

lambda x, y︸ ︷︷ ︸
parameters

: x * y︸ ︷︷ ︸
return expression

Unlike functions created by a def statement, the function object that a lambda expression
creates has no intrinsic name and is not bound to any variable. In fact, nothing changes in
the current environment when we evaluate a lambda expression unless we do something
with this expression, such as assign it to a variable or pass it as an argument to a higher
order function.
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1. What would Python print?
>>> a = lambda: 5
>>> a()

>>> a(5)

>>> b = lambda: lambda x: 3
>>> b()(15)

>>> c = lambda x, y: x + y
>>> c(4, 5)

>>> d = lambda x: lambda y: x * y
>>> d(3)

>>> d(3)(3)

>>> e = d(2)
>>> e(5)

>>> f = lambda: print(1)

>>> g = f()

>>> g
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2 Environment Diagrams

1. Draw the environment diagram for evaluating the following code
def mystery_a(lst):

def mystery_b(color, count):
lst.extend([color] * count)

return mystery_b

colors = ["purple", "pink", "brown"]
f = mystery_a(colors)
f("red", 3)
f("blue", 1)

2. If on line 2 and line 4, we replace mystery b with mystery a, what will change in
the environment diagram, if anything?

3. If on line 3, we change lst.extend([color] * count) to lst.append([color]
* count), what will change, if anything?
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4. Draw the environment diagram for evaluating the following code
def ross(geller, num):

return geller(monica(num))

def monica(num):
if num >= 2:

return tup[0]
return tup[num]

f = lambda x: x[-1] == "a"
tup = ("hola", "there")
rachel = ross(f, 5)
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5. Draw the environment diagram for evaluating the following code
def anna(olaf):

return lambda a, b: olaf or [a] * b

hans = [1]
elsa = anna(hans.append(4))
kristoff = elsa(3, 4)
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3 Dictionaries

Dictionaries are data structures which map keys to values. Dictionaries in Python are
unordered, unlike real-world dictionaries — in other words, key-value pairs are not ar-
ranged in the dictionary in any particular order. Let’s look at an example:
>>> pokemon = {'pikachu': 25, 'dragonair': 148, 'mew': 151}
>>> pokemon['pikachu']
25
>>> pokemon['jolteon'] = 135
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148, 'mew': 151}
>>> pokemon['ditto'] = 25
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148,
'ditto': 25, 'mew': 151}
>>> pokemon['mew'] = 15
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148,
'ditto': 25, 'mew': 15}

The keys of a dictionary can be any immutable value, such as numbers, strings, and tuples.1

Dictionaries themselves are mutable; we can add, remove, and change entries after cre-
ation. There is only one value per key, however — if we assign a new value to the same
key, it overrides any previous value which might have existed.

To access the value of dictionary at key, use the syntax dictionary[key].

Element selection and reassignment work similarly to sequences, except the square brack-
ets contain the key, not an index.

• To add val corresponding to key or to replace the current value of key with val:
dictionary[key] = val

• To iterate over a dictionary’s keys:
for key in dictionary: #OR for key in dictionary.keys()

do_stuff()

• To iterate over a dictionary’s values:
for value in dictionary.values():

do_stuff()

1To be exact, keys must be hashable, which is out of scope for this course. This means that some mutable objects, such as classes,
can be used as dictionary keys.
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• To iterate over a dictionary’s keys and values:

for key, value in dictionary.items():
do_stuff()

• To remove an entry in a dictionary:
del dictionary[key]

• To get the value corresponding to key and remove the entry:
dictionary.pop(key)

3.1 Questions

1. What would Python display?
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148, 'ditto': 25,

'mew': 151}

>>> 'mewtwo'in pokemon

>>> len(pokemon)

>>> pokemon['ditto'] = pokemon['jolteon']
>>> pokemon[('diglett', 'diglett', 'diglett')] = 51
>>> pokemon[25] = 'pikachu'
>>> pokemon

>>> pokemon['mewtwo'] = pokemon['mew'] * 2
>>> pokemon

>>> pokemon[['firetype', 'flying']] = 146

Note that the last example demonstrates that dictionaries cannot use other mutable
data structures as keys. However, dictionaries can be arbitrarily deep, meaning the
values of a dictionary can be themselves dictionaries.
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2. Write a function that takes in a sequence s and a function fn and returns a dictionary.

The values of the dictionary are lists of elements from s. Each element e in a list
should be constructed such that fn(e) is the same for all elements in that list. Finally,
the key for each value should be fn(e).
def group_by(s, fn):

"""
>>> group_by([12, 23, 14, 45], lambda p: p // 10)
{1: [12, 14], 2: [23], 4: [45]}
>>> group_by(range(-3, 4), lambda x: x * x)
{0: [0], 1: [-1, 1], 4: [-2, 2], 9: [-3, 3]}
"""
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