
Computational Structures in Data Science

SQL

Announcements

• One week left – main task: Ants project
• This week: SQL + AMA "Lecture"
• Next Week: RRR week –
•NO CLASS, modified OH schedules
• Monday Zoom Review/Wrap Up Session

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

SQL Basics

• SQL Keywords are case-insensitive
• e.g. SELECT and select do the same thing
• I try to capitalize them to make it clear what's-what.
• The order of SQL keywords matters
• e.g. SELECT ... FROM … WHERE …
• Every statement ends in a ;
• Whitespace doesn't matter
• But indentations and newlines help make queries readable!
• Despite being a standard, differences do exist between databases.
We use sqlite3.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

A Running example from Data 8

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

SELECT

•Comma-separated list of column descriptions
•Column description is an expression, optionally followed by as and a
column name

•Selecting literals creates a one-row table

•union of select statements is a table containing the union of the
rows

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

select "strawberry" as Flavor, "pink" as Color, 3.55 as Price union
select "chocolate","light brown", 4.75 union
select "chocolate","dark brown", 5.25 union
select "strawberry","pink",5.25 union
select "bubblegum","pink",4.75;

select [expression] as [name], [expression] as [name]; . . .

select "strawberry" as Flavor, "pink" as Color, 3.55 as Price;

SELECT …

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Projecting existing tables

•Input table specified by from clause
•Subset of rows selected using a where clause
•Ordering of the selected rows declared using an order by clause

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

select [columns] from [table] where [condition] order by [order] ;

SELECT * FROM cones ORDER BY Price;

What's different about this table? IDs!

• In practice, every row or record in a table should have a
unique unambiguous ID
• Why?
• How do we know if a record is the same as some other value?
• A properly setup table will handle this for you. J
• We'll see it's use in next lecture.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Projection

•A “projection” is a view of a table, it doesn’t alter the state of the
table.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Filtering in SQL

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Filtering rows - where

•Set of Table records (rows) that satisfy a condition

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

select [columns] from [table] where [condition] order by [order] ;

SQL Operators for predicate

•use the WHERE clause in the SQL statements such
as SELECT, UPDATE and DELETE to filter rows that do not meet a
specified condition

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

http://www.zentut.com/sql-tutorial/sql-select/
http://www.zentut.com/sql-tutorial/sql-update/
http://www.zentut.com/sql-tutorial/sql-delete/

Approximate Matching: LIKE [Docs]

• LIKE compares text to a pattern
• Case-Insensitive by default. Means 'a' and 'A' are the same.
• Allows "wildcards" that match any character.
• % means "zero or more" characters at this "spot" in the pattern
• Examples:
'abc' LIKE 'abc' à true
'abc' LIKE 'a%' à true
'abc' LIKE '%b%' à true –shortcut for "does abc contain b?"
'b' LIKE '%b%' à true
'abc' LIKE 'c' à false

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://www.postgresql.org/docs/current/functions-matching.html

Summary

•SQL a declarative programming language on relational tables
•largely familiar to you from data8
•create, select, where, order, group by, join
•Databases are accessed through Applications
•e.g., all modern web apps have Database backend
•Queries are issued through API

•Be careful about app corrupting the database

•Data analytics tend to draw database into memory and operate on it
as a data structure
•e.g., Tables

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

SELECT <col spec> FROM <table spec> WHERE <cond spec>
 GROUP BY <group spec> ORDER BY <order spec> ;

INSERT INTO table(column1, column2,...)
 VALUES (value1, value2,...);

CREATE TABLE name AS <select statement> ;

CREATE TABLE name (<columns>) ;

DROP TABLE name ;

Summary – Part 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

SQL: Aggregations

Aggregations are Powerful & Common!

SELECT date_trunc('day', created) as date, COUNT(*)
FROM users
WHERE created > current_date - interval '1 year'
GROUP BY date;

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

date count
Apr 17, 2023, 12:00 AM 136
Apr 18, 2023, 12:00 AM 257
Apr 19, 2023, 12:00 AM 326
Apr 20, 2023, 12:00 AM 167
Apr 21, 2023, 12:00 AM 144

• The GROUP BY clause is used to group rows returned by SELECT
statement into a set of summary rows or groups based on values of
columns or expressions.

• Apply an aggregate function, such as SUM, AVG, MIN,
MAX or COUNT, to each group to output the summary information.

Grouping and Aggregations

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

http://www.zentut.com/sql-tutorial/sql-select/
http://www.zentut.com/sql-tutorial/sql-select/
http://www.zentut.com/sql-tutorial/sql-aggregate-functions/
http://www.zentut.com/sql-tutorial/sql-sum/
http://www.zentut.com/sql-tutorial/sql-avg/
http://www.zentut.com/sql-tutorial/sql-min-max/
http://www.zentut.com/sql-tutorial/sql-min-max/
http://www.zentut.com/sql-tutorial/sql-count/

Unique & DISTINCT values

select DISTINCT [columns] from [table] where [condition] order by [order] ;

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

SQL: Joins

Joining tables

•Two tables are joined by a comma to yield all combinations of a row
from each
•select * from sales, cones;

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Joins

• Joins combine two tables
• A "cross product" or full join gives all combiniations
• This is often not useful!
• So, we can do an inner join where we "combine" rows only on some
logical identifier, like an "id"
• Often this is called a "foreign key" or a reference to an object in
another table.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

SELECT * FROM sales, cones WHERE cone_id =cones.id;

sqlite> SELECT * FROM cones, sales WHERE cone_id=cones.id;
Id|Flavor|Color|Price|Cashier|id|cone_id
1|strawberry|pink|3.55|Baskin|3|1
1|strawberry|pink|3.55|Robin|6|1
2|chocolate|light brown|4.75|Baskin|1|2
2|chocolate|light brown|4.75|Baskin|4|2
2|chocolate|light brown|4.75|Robin|5|2
3|chocolate|dark brown|5.25|Robin|2|3

When column names conflict we write: table_name.column_name in a query.

Inner Join

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Putting It All Together:

• Which of our cashiers sold the highest value of ice cream?
• First we need to find which cones were sold by whom, then we
SUM() the results!

sqlite> SELECT Cashier, SUM(Price) as 'Total Sold'
FROM sales, cones WHERE sales.cone_id = cones.id
GROUP BY Cashier;
Cashier|Total Sold
Baskin|13.3
Robin|13.8

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Queries within queries

• Any place that a table is named within a select statement, a table
could be computed
• As a sub-query

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

SQL: CREATE and INSERT and
UPDATE

(THIS IS NOT TESTED IN 88C!)

CREATE TABLE

•SQL often used interactively
•Result of select displayed to the user, but not stored
•Can create a table in many ways
•Often may just supply a list of columns without data.
•Create table statement gives the result a name
•Like a variable, but for a permanent object

CREATE TABLE [name] AS [select statement];

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://www.sqlite.org/lang_createtable.html

CREATE TABLE cones AS
 select 1 as ID, "strawberry" as Flavor, "pink" as Color,
3.55 as Price union
 select 2, "chocolate", "light brown", 4.75 union
 select 3, "chocolate", "dark brown", 5.25 union
 select 4, "strawberry", "pink",5.25 union
 select 5, "bubblegum", "pink",4.75 union
 select 6, "chocolate", "dark brown", 5.25;

Notice how column names are introduced and implicit later on.

SQL: creating a named table

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Inserting new records (rows)

•A database table is typically a shared, durable repository shared by
multiple applications

INSERT INTO table(column1, column2,...)
 VALUES (value1, value2,...);

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

UPDATING new records (rows)

•If you don’t specify a WHERE, you’ll update all rows!
UPDATE table SET column1 = value1, column2 =
value2 [WHERE condition];

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

SELECT <col spec> FROM <table spec> WHERE <cond spec>
 GROUP BY <group spec> ORDER BY <order spec> ;

INSERT INTO table(column1, column2,...)
 VALUES (value1, value2,...);

CREATE TABLE name AS <select statement> ;

CREATE TABLE name (<columns>) ;

Summary

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

