
Computational Structures in Data Science

Programming Paradigms

CITN: A "Backdoor" Almost Infected Millions of Computers

What we know about the xz Utils backdoor that almost infected the world [Link]
Malicious updates made to a ubiquitous tool were a few weeks away from going mainstream.
DAN GOODIN - 3/31/2024, 11:55 PM
"On Friday, a lone Microsoft developer rocked the world when he revealed a backdoor had
been intentionally planted in xz Utils, an open source data compression utility available on
almost all installations of Linux and other Unix-like operating systems. The person or people
behind this project likely spent years on it. They were likely very close to seeing the backdoor
update merged into Debian and Red Hat, the two biggest distributions of Linux, when an eagle-
eyed software developer spotted something fishy."

Why is this interesting? Software is incredibly complex, managed by many individuals. Open-
source software (like Python, Jupyter, Linux) means everyone can read + audit the source code

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/

Announcements

• Q&A/AMA "Lecture" on April 24
• Review/Wrap Up Optional Lecture April 29
• Mon of RRR week. Probably Zoom, TBD.
• 70% of you filled out the midterm survey!
• Don't forget to do your taxes! :/
• But you'll probably get a refund, and can even file
for free
• We don't have time for it – but good story of tech +
government + society

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://www.irs.gov/newsroom/irs-free-file-is-now-available-for-the-2024-filing-season

Midterm Feedback Survey

• Not really the "midpoint" anymore.. :/
• Thank you!
• You hit 70%! But still please fill it out!
• That means 2 points of EC for you. J
• General Feedback:
• Some notes/improvements on course website+software. Working
on it.
• More time at the beginning – yes, this makes sense. Will add some
followups on Final survey.
• Interesting and useful comments about AI! J Y'all are on the right
track. Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Programming Paradigms

Programming Paradigms

• Paradigm (Merriam Webster): a typical example or pattern
of something; a model. Example: "there is a new paradigm
for public art in this country"
• Programming Paradigm (Joe Turner, Clemson University):
“A programming paradigm is a general approach,
orientation, or philosophy of programming that can be
used when implementing a program.” You might call this a
"style"

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

http://people.cs.clemson.edu/~turner/courses/cs428/current/webct/content/pz/ch2/ch2_6.html

Why?

• Understanding the paradigm helps you understand
the intent of the programmer
• Pick the right tool for the job!
• Different problems require different solutions
• Most programs written today are multi-paradigm
•They mix and match the style
• Problem solving technique

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Examples of Paradigms

Example, three very different approaches to squaring list:
lst = []
for i in range(5):

lst += [i*i]

map(lambda x: x*x, range(5))

[x * x for x in range(5)]
range(5).square_nums() # Only theoretically,

e.g assume `def square_nums(self)` exists.
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Word of Warning

•There is no universally agreed upon taxonomy of human programming
styles.
•One possible list:
• Imperative
• Functional
• Array-based
• Object-Oriented
• Declarative
•These terms are a bit fluid, and as you’ll see if you read more on wikipedia,
there is substantial disagreement about these terms.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://en.wikipedia.org/wiki/Talk:Programming_paradigm

Programming Paradigms

Example, three very different approaches to squaring list:
Functional: map(lambda x: x*x, [1, 2, 3])

Array-based:
np.array([1,2,3]) * np.array([1,2,3])
np.array([1,2,3]) ** 2

Imperative:

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

def squares(nums):
result = []
for num in nums:

result += [num * num]
return result

The Imperative Programming Paradigm

• An imperative program provides a sequence of steps.
• Like following a recipe.
• Assignment is allowed (can set variables).
• Mutation is allowed (can change variables).
• Example (acronym):

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

def acronym_i(words):
result = ''
words = words.split(' ')
for word in words:

if len(word) > 4:
result += word[0]

return result

The Functional Programming Paradigm

•In functional programming, computation is thought of in terms of the
evaluation of functions.
•No state (e.g. variable assignments).
•No mutation (e.g. changing variable values).
•No side effects when functions execute.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

def acronym_f(words):
return reduce(add,

map(lambda w: w[0],
filter(lambda w: len(w) > 3,

words.split(' '))))

Imperative vs. Functional

•Can argue that functional is a subset of imperative.
•Functional programming is still a series of steps.
• “Just” need to avoid state and think of computation as
functions.
•Functional Programs:
• More often fewer clear /correct ways to do something.
• Programming feels more like solving puzzles.
• Solutions can seem like magic (especially to imperative
programmers).

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why do we push functional programming?

•Tend to be shorter.
•Tend to be easier to debug (no need to track variables / side
effects).
•Tend to parallelize better (can split work on multiple computers).
• Example: Each computer can do 1/8th of a “map” operation.
• Reducing mutations makes computation easier to scale
• Hugely prevalent in AI fields.
• Growing in popularity.
• Explosion of ideas in new programming languages
• “old” ideas are becoming new/popular

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

A Hybrid Approach

•Paradigms are not official rules. Just attempts to
taxonomize approaches taken by humans.
•Code below is sorta functional, sorta imperative.
•Utilizes state for clarity. Many program this way.
You might not.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

def acronym_h(words):
words = words.split(' ')
long = filter(lambda w: len(w) > 4, words)
letters = maps(lambda w: w[0], long)
return ''.join(letters)

Discussion and Debate

•Which of these do you like best?

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Hybrid: Some functional, but uses variables, soom OOP!

Functional: Less to keep track of. Fewer
variables, lines

Imperative
Very small steps to reason about.
Seems "natural", but lots of code

def acronym_h(words):
words = words.split(' ')
long = filter(lambda w: len(w) > 3, words)
letters = maps(lambda w: w[0], long)
return ''.join(letters)

def acronym_f(words):
return reduce(add,

map(lambda w: w[0],
filter(lambda w: len(w) > 3,

words.split(' '))))

def acronym_i(words):
result = ''
words = words.split(' ')
for word in words:

if len(word) > 4:
result += word[0]

return result

Array-Based Programming!

• Not something we can easily demo in native Python.
• Treats arrays a "first class" objects – not just containers:
• Mathematical Operations correspond to "Pairwise" computations:

• np.array([1,2,3]) * np.array([1,2,3])
• np.array([1,2,3]) + np.array([1,2,3]) == [2, 4, 6] à
array([True, True, True])
• Note! Even == is now an array operation. Good? Bad? Just different!

•Very common in data science, engineering!
• R (STAT 134), MATALAB, Julia, APL

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Object-Oriented Programming

The Object-Oriented Programming Paradigm

•In object programming, we organize our thinking around
objects, each containing its own data, and each with its own
procedures that can be invoked.

• We've had plenty of practice here!
• OOP provides many tools!
• But also leaves many import questions open:
• Should functions be mutable or immutable?
• How much inheritance is the right amount?

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Object-Oriented Programming

• There is a LOT more than what we see in C88C
• Rich model for composing classes together
• Python allows you to inherit from multiple classes at once

• Can easily be overused.
• Explored in depth in CS61B
• In Python "everything is an object”
• You benefit from OOP ideas even when you don’t realize.
• Global functions like len() delegate to "magic" methods on
objects, e.g. __len__

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Declarative Programming

Declarative Programming

• In declarative programming, we express what we want, without
specifying how. A program is simply a description of the result we
want.
• Can be a very different thought process!
• Incredibly useful, but not necessarily best for all types of
problems.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

The Web: HTML

• Web pages are built with a language called HTML.
• Programmers specific what content should be on the page, and
where.
• The browser lays out the content on each device in the right spot for
each screen size, etc.
• Developers don't have to specify what happens when someone changes the
window size, or hits print, etc.

• Tags, like "section", "p" (paragraph), "header" "time" describe the type
of content

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

HTML Continued

• A partial section of the CS88 Website:
<div id="content" class="container">

<div class="page-header">
<h1>CS

88:
Computational Structures in Data Science

<div class="small">Fall 2023</div>
<div class="small">Instructor: Michael Ball</div>

</h1>
</div>
<section><h2>Announcements</h2>…

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Declarative Programming

•In declarative programming, we express what we want, without
specifying how. A program is simply a description of the result we
want.
•Example: coloring a map of Germany using the Prolog language:

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://bernardopires.com/2013/10/try-logic-programming-a-gentle-introduction-to-prolog/

Prolog Example (From Bernardo Pires)

•Tell Prolog that colors exist:
Tell Prolog that same colors can’t touch:

•

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Tell Prolog all the borders:

Ask Prolog for answer:

https://bernardopires.com/2013/10/try-logic-programming-a-gentle-introduction-to-prolog/

Declarative Programming à Results

• Result is a list of states and color pairs

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Declarative Programming

•Each declarative language has only a limited number of
tasks for which you can specify “what”, and not “how”, e.g.
• Prolog: Logic.
• SQL: Queries from a database.
• Pandas and datascience modules: Data manipulation
operations like aggregation, filtering, joining, etc.
• Very common operations in Data 8 and Data 100.
• While the syntax of Pandas is odd, the ideas will build
upon Data 8.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Declarative Programming In Data 8

• cones.group('Flavor')
• datascience module figures out the grouping
• table.where(label, conditions)
• Can combine these simpler expressions together for more
complex questions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Declarative or Object-Oriented?

• Both!
• Tables (in Data 8, Pandas, etc) are Python objects
• There is a class Table with a def columns(self) method
• However, the interface is often declarative.
• You describe what the output should look like

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why SQL?

•SQL is a declarative programming language for
accessing and modifying data in a relational
database.
•It is an entirely new way of thinking (“new” in 1970,
and new to you now!) that specifies what should
happen, but not how it should happen.
• Python is a multi-paradigm language, but we
haven't yet tried declarative programming.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

What is SQL?

•A declarative language
•Described what to compute
•Query processor (interpreter) chooses which of many equivalent
query plans to execute to perform the SQL statements

•ANSI and ISO standard, but many variants
•CS88's SQL will work on nearly all relational databases—databases
that use tables.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

What is SQL?

•SELECT statement creates a new table, either from scratch or by
projecting a table
• INSERT adds to a table, UPDATE changes data.
•CREATE TABLE statement gives a global name to a table
•Lots of other statements
• ANALYZE, DELETE, EXPLAIN, …

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

SQL: Describe The Shape of the result!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

What if I want a table with just a few rows?

• Here the `where()` in Python is using the
datascience module.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Summary

• Paradigms are styles, guidelines for how to approach a program
• Each is equally capable, but some are suited best to particular tasks.
• Declarative programming gets us to think about the what rather
than the how.
• Almost no programs are purely single-paradigm

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

