
Computational Structures in Data
Science

Lecture: 
Exceptions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Survey Comments

Learning Objectives

• Exceptions give us a formal way to address error conditions
• "Catch" exceptions in a Python Program
• Define and Raise our own exceptions

Errors Can Occur Just About Anywhere!
•Function receives arguments of improper type?
•Resources (e.g. files or some data) are not available
•Network connection is lost or times out?

Example exceptions (Docs)

•Unhandled, "thrown" back to the top level interpreter
•Or halt the program

>>> 3/0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> str.lower(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: descriptor 'lower' requires a 'str' object but received a 'int'
>>> ""[2]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range
>>>

https://docs.python.org/3/library/exceptions.html

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Exceptions mean something bad has
happened!

Functions

•Q: What is a function supposed to do?
•A: One thing well
•Q: What should it do when it is passed arguments that don’t make sense?

>>> def divides(x, y):
... return y%x == 0
...
>>> divides(0, 5)
???
>>> def get(data, selector):
... return data[selector]
...
>>> get({'a': 34, 'cat':'9 lives'}, 'dog’)
????

Exceptional exit from functions

•Function doesn’t “return” but instead execution is thrown out of the function

>>> def divides(x, y):
... return y % x == 0
...
>>> divides(0, 5)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in divides
ZeroDivisionError: integer division or modulo by zero
>>> def get(data, selector):
... return data[selector]
...
>>> get({'a': 34, 'cat':'9 lives'}, 'dog')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in get
KeyError: 'dog'
>>>

Reading A "Stack Trace" or "Traceback" (Docs)
• All errors in Python should return some structured feedback.
• Errors may be dense but contain some really helpful information!
👉 python3 -i 18-Exceptions.py
What is your age? 5
Catching CS88Error
Traceback (most recent call last):
 File "…Exceptions.py", line 24, in <module>
 get_age_in_days()
 File "…", line 20, in get_age_in_days
 raise e
 File "…", line 14, in get_age_in_days
 raise CS88Error('You seem young!')
__main__.CS88Error: You seem young!

https://docs.python.org/3/library/traceback.html

Continue out of multiple calls deep
•Stack “unwinds” until exception is handled or we reach the start of the program

Types of exceptions

• Exceptions are just classes in Python, with common types for ease of use /
clarity.
• All inherit from BaseException
• AssertionError – The of exception raised by a failing assert statement
•TypeError -- A function was passed the wrong number/type of argument
•NameError -- A name wasn't found
•KeyError -- A key wasn't found in a dictionary
•RuntimeError -- Catch-all for troubles during interpretation
•Your own exceptions!

Flow of control stops at the exception
•And is ‘thrown back’ to wherever it is caught, by default no where.

Assert Statements
•Allow you to make assertions about assumptions that your code relies on
•Use them liberally!
• Incoming data is "dirty" and unsafe till you’ve "cleaned" it

•They "do nothing" if the statement is true.
•Raise an exception of type AssertionError
•You can turn them off:
• Ignored in optimize flag: python3 –O …
• Governed by bool __debug__

assert <assertion expression>, <string for failed>

def divides(x, y):
 assert x != 0, ”Denominator must be non-
zero”
 return y % x == 0

Demo

• See an exception get raised
• Use an assert statement to validate input
• Use try/catch to recover from an exception

Handling Errors – try / except

•Wrap your code in try – except statements

•Execution rule
•<try suite> is executed first
• If during this an exception is raised and not handled otherwise
•And if the exception inherits from <exception class>
•Then <except suite> is executed with <name> bound to the exception
•Control jumps to the except suite of the most recent try that handles the exception

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
... # continue here if <try suite> succeeds w/o exception

Demo

Raise statement
•Exception are raised with a raise statement
• raise <exception>, e.g.:
• raise NameError(f"The property {name} does not exist")

•<expression> must evaluate to a subclass of BaseException or an instance of
one
•Exceptions are constructed like any other object
• TypeError(‘Bad argument’)
• Raise Exceptions for unrecoverable errors!
• Something bad has gone on and you cannot continue.

class NoiseyException(Exception):
 def __init__(self, stuff):
 print("Bad stuff happened", stuff)

try:
 return fun(x)
except:
 raise NoiseyException((fun, x))

class CS88Error(Exception):
 pass # The one time you can skip init. ;)

Exceptions are Classes

Demo

Summary

•Approach use of exceptions as a design problem
•Meaningful behavior => methods [& attributes]
•ADT methodology: What should a function do?
•What’s private and hidden? vs What’s public?
•Use it to streamline development

•Anticipate exceptional cases and unforeseen problems
• try … except
• raise / assert

