
Computational Structures in Data Science

Data Structures:
Linked Lists

Guest Lecture (Rebecca Dang)

Announcements

A note on the midterm…
•Staff aiming to release midterm grades by end of day tomorrow
(Tue 3/19) but no guarantees
•Your grades don’t define you. Seriously!
• From Berkeleytime historical data, ~40% of students get an A- or
higher

• Focus on learning the material, stay on track, don’t lose sight of the
big picture
• If you need support or have questions/concerns please reach out
:D

Announcements

Lab 8 and HW 8
•Released this week
•Due the week we come back from spring break
•Nothing due this week 🎉

Fun Video: CGP Grey Rock Paper Scissors

• How many rounds of Rock Paper Scissors
is a 1 in 1,000,000,000 chance of winning?
• Each video leads to another set of videos.
• This is technically a tree, but we'll come
back to that later.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Where We’re Going

• For now – we’ve learned most of the basics of Python!
• There are plenty of Python we don’t see in CS88
• We’ll be applying OOP principles to explore new topics.
• We’re going to focus on storing / organizing data
• Lists, Tuples, and Dictionaries: Data Structures you already know!
• BUT: How do we build our own?
• We’ll build our own lists first, then talk about trees and other ways of
organizing data

• Last few lectures: Switch to SQL

Why "Data Structures"? (Next Few lectures)

•Data Structures
•OOP helps us organize our programs
•Data Structures help us organize our data!
• Can be implemented using OOP

•You already know lists and dictionaries!
•We’ll see a new one today
• Enjoy this stuff? Take CS 61B!
• Find it challenging? Don’t worry! It’s a different way of thinking.

Computational Structures in Data Science

Linked Lists

Data Structures

•A data structure is a way to organize or group a bunch of independent pieces of
data.
• Lists (arrays)
•Dictionaries
• Tuples
•A class, on its own, is not necessarily a data structure, it represents a new data
type.
•a "car" or a "person" is an instance of that data type.
• Lists, Dicts, etc are also data types; their goal is to organize other data.
• These are common patterns that can be used to solve a wide variety of
problems.
•Sometimes we're giving structure to make it easier as a programmer,
sometimes we're trying to be fast or efficient.

Linked Lists

• A Recursive List, sometimes called a "rlist"
• Linked lists contain other linked lists
•A series of items with two pieces:
•A value, usually called "first"
•A “pointer” to the rest of the items in the list.

•We’ll use a very small Python class “Link” to model this.
•Link(12, Link(99, Link(37, Link.empty)))

What's Needed For a Linked List?

• first
• rest
• An idea of “empty”
• Nothing else is necessary
• __repr__, __len__ methods are all useful shortcuts and useful
recursion practice.

The Link Class

class Link:
 empty = ()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

That's all we need!
• We can add a __repr__ method, length, etc.
• Use an empty tuple for clarity / easier than None.
• () has lots of useful methods defined, like len()

Recursion Is Implicit

self.rest

Different ways to think of a linked list: “Relative” vs “recursive”

self.rest

Iterating or Processing a Linked List

• Our base case or stopping condition?
• Linked List is empty!
• We can use recursion or iteration.
• Which is “better”?
• Depends on the problem we are trying to solve!

Iterating Over All Items in Linked List

def print_link(link):
 if not link:
 return
 print(link.first)
 print_link(link.rest)

• Base Case: No more items
• Do Action
• Recurse on the rest of the list

def print_link(link):
 if not link:
 return
 item = link
 while item:
 print(item.first)
 item = item.rest

• Handle the empty list
• Keep track of current item
• Update item to be the next in
sequence.

Iterating Over All Items in Linked List

def print_link(link):
 if not link:
 return
 print(link.first)
 print_link(link.rest)

• Base Case: No more items
• Do Action
• Recurse on the rest of the list

def print_link(link):
 if not link:
 return
 item = link
 while item:
 print(item.first)
 item = item.rest

• Handle the empty list
• Keep track of current item
• Update item to be the next in
sequence.

Demo – See the Notebook

Uses for a Linked List

• Modeling a Polynomial Equation
• each item is (coefficient, exponent, next_term)
• Items in a music Playlist
• each item is a (song, next_song) pair
• easy to add/remove items
• Specifically: often want to remove the first item

• Model real-world relationships
• Anything that is a "chain" is a good option
• Next up: We'll extend this idea to "trees"

Why are linked lists useful?

• Honestly, a regular list is easier most of the time
• Python handles all the hard details!
• When data gets large, there are lots of edge cases.
• In terms of efficiency: Linked lists make it fast to move
items around, insert, and delete from the front and/or
back (depending on implementation)

•But they are slower to finding any single item (“random
access”) – can’t index into a linked list

• In Ants Project: You'll see a list of Place objects which
are linked together via an entrance and an exit – they’re
linked lists!

Lists vs Linked Lists

•Built into Python
•Create with [] or list()
•Can iterate through with loops
•Can use index to retrieve element
(e.g. lst[0])
•Not a recursive data structure

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

•Link class (created for C88C, isn’t built
into Python)
•Create with Link(<first>, <rest>)
•Can iterate through with loops
•But not “directly” through a for loop

•Can’t use indices to retrieve elements
• Is a recursive data structure

Please send me your feedback (anonymous) :D

https://go.c88c.org/rebecca-lecture

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://go.c88c.org/rebecca-lecture

Efficiency of Linked Lists vs Lists

• Linked Lists generally use less memory.
• Linked Lists:
• Once you've found an item, inserting / removing is easy, O(1)
• Finding anything other than the first/last item is O(n)
• "Regular" Lists:
• Inserting / Removing items, other than the last is O(n) – due to internal
copying
• Finding any random item is O(1).

• What if you need to iterate over all items in order?
• O(n) in both cases

