
Computational Structures in Data Science

OOP Part 3
Midterm Review

Computational Structures in Data Science

Object-Oriented Programming:
Inheritance Review

Class Inheritance

•Classes can inherit methods and attributes from parent
classes but extend into their own class.
• “is a” relationship

Example

class BaseAccount:
def __init__(self, name, initial_deposit):

Initialize the instance attributes
self._name = name
self._acct_no = Account._account_number_seed
Account._account_number_seed += 1
self._balance = initial_deposit

class CheckingAccount(BaseAccount):
def __init__(self, name, initial_deposit):

Use superclass initializer
BaseAccount.__init__(self, name, initial_deposit)
Alternatively:
super().__init__(name, initial_deposit)
Additional initialization
self._type = "Checking"

Accessing the Parent Class

• super() gives us access to methods in the parent or "superclass"
• Can be called anywhere in our class
• Handles passing self to the method
• Handles looking up an attribute on a parent class, too.
• We can directly call ParentClass.method(self, …)
• This is not quite as flexible if our class structure changes.

• In general, prefer using super()!
• Outside of C88C, things can get complex…
• https://docs.python.org/3/library/functions.html#super

https://docs.python.org/3/library/functions.html

super() and Multiple Parent Classes

• In general, super() is "smart"
• It tries to find the most correct parent class
• Super will search through classes with multiple parent classes, or a long
hierarchy of classes

• ParentClass is less flexible, but very specific.
• Use it if you know you always want the same class to be used.

When Should You Use Inheritance?

Use inheritance to refine the behavior of a parent.

For example, our BaseAccount allows us to overdraft our account.
We might want to protect against this:

class CheckingAccount(BaseAccount):
(…omitted…)
def withdraw(self, amount):

if self.account_balance() - amount < 0:
return "ERROR: You are not allowed to overdraft a

CheckingAccount."
return super().withdraw(amount)

Inheritance & Class Attributes - Warning

Previously, we wrote something like this:

class SavingsAccount(BaseAccount):
interest_rate = 0.02

def accrue_interest(self):
self._balance = self._balance * (1 +

SavingsAccount.interest_rate)

What happens when we have a new subclass?
class RetirementSavingsAccount(SavingsAccount):

interest_rate = 0.05

Solution: use self.interest_rate instead, which will look up the
appropriate attribute.

Computational Structures in Data Science

Object-Oriented Programming:
"Magic" Methods

Learning Objectives

• Python's Special Methods define built-in properties
• __init__ # Called when making a new instance
• __sub__ # Maps to the - operator
• __str__ # Called when we call print()
• __repr__ # Called in the interpreter

Special Initialization Method

class BaseAccount:

def __init__(self, name, initial_deposit):
self.name = name
self.balance = initial_deposit

def account_name(self):

return self.name

def account_balance(self):
return self.balance

def withdraw(self, amount):
self.balance -= amount
return self.balance

return None

__init__ is called automatically when we write:
my_account = BaseAccount('me', 0)

More special methods

class BaseAccount:
… (init, etc removed)

def deposit(self, amount):
self._balance += amount
return self._balance

def __repr__(self):
return '< ' + str(self._acct_no) +

'[' + str(self._name) + '] >'

def __str__(self):
return 'Account: ' + str(self._acct_no) +

'[' + str(self._name) + ']'

def show_accounts():
for account in BaseAccount.accounts:

print(account)

Goal: readable

Goal: unambiguous

More Magic Methods

•We will not go through an exhaustive list!
• Magic Methods start and end with "double underscores" __
•They map to built-in functionality in Python. Many are logical names:
• __init__ → Class Constructor
• __add__ → + operator
• __sub__ → - operator
• __getitem__ → [] operator
• __repr__ and __str__ → control output
• A longer list for the curious:
• https://docs.python.org/3/reference/datamodel.html

https://docs.python.org/3/reference/datamodel.html

Computational Structures in Data Science

Midterm Review

Announcements & Policies

•Midterm:
• 2 hours, 120 Minutes
• 5 Handwritten Cheat sheets – More than ~3 is counter-productive
• 1 CS88 Provided Reference Sheet
•Remember: HW6 / Lab 6 due next week, but are in scope.

You are not your grades!
Do your best!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

My Advice

•Don't rush!
• Slow is fast and fast is slow
• BREATHE!
•Skim the exam first
• It's ok to do questions out of order!
• Get the stuff you're good without out of the way
• BUT don't spend too much time planning the exam.
•Read through the question once
• What's it asking you to do at a high level?
• What do the doctests suggest?
• What techniques should you be using?
• Use the scratch space!

Midterm Topics

• Everything Through OOP w/ Inheritence
• Functions
• Higher Order Functions
• Functions as arguments
• Functions as return values
• Environment Diagrams
• Lists, Dictionaries
• List Comprehensions, Dictionary Comprehensions
• Abstract Data Types
• Recursion
• Object-Oriented Programming

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Recursion Review

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

The Recursive Process

Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be solved

directly
ú Recursive case(s). A recursive case has three components:

 Divide the problem into one or more simpler or smaller parts
 Invoke the function (recursively) on each part, and
 Combine the solutions of the parts into a solution for the problem.

Recursion Key concepts – by example

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution to
simpler problem 4. ”Combine” the simpler part of

the solution, with the recursive
case

Recursion With Lists

•Goal: Find the smallest item in a list, recursively.
•Consider: How do we break this task into smaller parts? What
is the "smallest list"?
•We care about the size of the list itself, not the values.def first(s):

"""Return the first element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

def min_r(s):
'''Return minimum value in a sequence.'''
if len(s) == 1:

return first(s)
else:

return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

Computational Structures in Data Science

Questions from Ed

Computational Structures in Data Science

Some Practice Questions

Exam Practice

•Spring 22 Q7
•Spring 20 Q5

SP22

SP20 #6

Fa21 8c

SP20 #5

