
Computational Structures in Data Science

Object-Oriented Programming

Announcements

• Midterm Thurs 3/14
• We will be sending seating assignments out early next week
• If you have a conflict email us ASAP – should have already filled out the form
• cs88@berkeley.edu (Please don't email just me. I love to help, but can't get to 500
emails)

• Review sessions posted on Ed.
• Will be updating Lab/HW schedule to give you a chance to study.

mailto:cs88@berkeley.edu

Computational Structures in Data Science

Object-Oriented Programming

Learning Objectives

• Learn how to make a class in Python
• class keyword
• __init__ method
• self

Object-Oriented Programming (OOP)

•Objects as data structures
• With methods you ask of them
• These are the behaviors

• With local state, to remember
• These are the attributes

•Classes & Instances
• Instance an example of class

• E.g., Fluffy is instance of Dog

• Inheritance saves code
• Hierarchical classes

• e.g., a Tesla is a special case of an Electric Vehicle,
which is a special cade of a car

• Other Examples (though not pure)
• Java (CS61B), C++

www3.ntu.edu.sg/home/ehchua/programming
/java/images/OOP-Objects.gif

Object-Oriented Programming is About Design

"In my version of computational thinking, I
imagine an abstract machine with just the
data types and operations that I want. If
this machine existed, then I could write the
program I want.
But it doesn’t. Instead I have introduced a
bunch of subproblems — the data types
and operations — and I need to figure out
how to implement them. I do this over and
over until I’m working with a real machine
or a real programming language. That’s the
art of design."

— Barbara Liskov,
 Turing Award Winner, UC Berkeley '61.
Full interview

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://www.quantamagazine.org/barbara-liskov-is-the-architect-of-modern-algorithms-20191120/

Classes

• Consist of data and behavior, bundled together to create
abstractions
• Abstract Data Types use functions to create abstractions
• Classes define a new type in a programming language
• They make the "abstract" data type concrete.

•A class has
•attributes (variables)
•methods (functions)

 that define its behavior.

Objects

•An object is the instance of a class.

Objects

•Objects are concrete instances of classes in memory.
•They have state
• mutable vs immutable (lists vs tuples)
• Methods are functions that belong to an object
•Objects do a collection of related things
•In Python, everything is an object
• All objects have attributes
• Manipulation happens through methods

Python class statement

class ClassName:
def __init__(self):

<initialization steps>
.
.
.
<statement-N>

Coming Next Week:
class ClassName (inherits):

<statement-1>
.
.
.
<statement-N>

From ADTs to Classes

• An ADT is an abstract representation of a type of Data.
def points(x, y) # our point ADT
 return { 'x': x, 'y': y}

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def subtract(self, other):
 return Point(self.x - other.x, self.y -
other.y)

From ADTs to Classes (Usage)

>>> origin = point(0, 0) # Using the ADT
>>> type(origin)
<class 'dict'>
>>> origin
{'x': 0, 'y': 0}
>>> my_house = Point(5, 5) # Using the class
>>> my_house.x
5
>>> type(my_house)
<class '__main__.Point'>
>>> my_house
<__main__.Point object at 0x104fdc710>Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Example: Account

class BaseAccount:

 def __init__(self, name, initial_deposit):
 self.name = name
 self.balance = initial_deposit

 def account_name(self):

 return self.name
 def balance(self):
 return self.balance

 def withdraw(self, amount):
 self.balance -= amount
 return self.balance

ne
w

 n
am

es
pa

ce

methods

attributes

The object

dot

Creating an object, invoking a method

my_acct = BaseAccount("John Doe", 93)
my_acct.withdraw(42)

dot

The Class Constructor

Special Initialization Method

class BaseAccount:

 def __init__(self, name, initial_deposit):
 self.name = name
 self.balance = initial_deposit

 def account_name(self):

 return self.name
 def balance(self):
 return self.balance

 def withdraw(self, amount):
 self.balance -= amount
 return self.balance

return None

More on Attributes

•Attributes of an object accessible with ‘dot’ notation
 obj.attr

•You can distinguish between ”public” and “private” data.
•Used to clarify to programmers how you class should be
used.
• In Python an _ prefix means “this thing is private”
•_foo and __foo do different things inside a class.
•More for the curious.
•Class variables vs Instance variables:
•Class variable set for all instances at once
• Instance variables per instance value

https://dbader.org/blog/meaning-of-underscores-in-python

Example

class BaseAccount:

 def __init__(self, name, initial_deposit):
 self.name = name
 self.balance = initial_deposit

 def name(self):
 return self.name

 def balance(self):
 return self.balance

 def withdraw(self, amount):
 self.balance -= amount
 return self.balance

Example: Suggested “private” attributes

class BaseAccount:

 def __init__(self, name, initial_deposit):
 self._name = name
 self._balance = initial_deposit

 def name(self):
 return self._name

 def balance(self):
 return self._balance

 def withdraw(self, amount):
 self._balance -= amount
 return self._balance

Example: class attribute

class BaseAccount:
 account_number_seed = 1000

 def __init__(self, name, initial_deposit):
 self._name = name
 self._balance = initial_deposit
 self._acct_no = BaseAccount.account_number_seed
 BaseAccount.account_number_seed += 1

 def name(self):
 return self._name

 def balance(self):
 return self._balance

 def withdraw(self, amount):
 self._balance -= amount
 return self._balance

More class attributes

class BaseAccount:
 account_number_seed = 1000
 accounts = []

 def __init__(self, name, initial_deposit):
 self._name = name
 self._balance = initial_deposit
 self._acct_no = BaseAccount.account_number_seed
 BaseAccount.account_number_seed += 1
 BaseAccount.accounts.append(self)

 def name(self):
 ...

 def show_accounts():
 for account in BaseAccount.accounts:
 print(account.name(),
 account.account_no(),account.balance())

