
Computational Structures in Data Science

Lecture:
Dictionaries and

Mutable Data

Maps Project Next Week!

• Partner Project
• See thread on Ed

• "Phases" break the project down:
• Phases 0 and 1 are easier than 2 and 3.

• Checkpoint Weds 2/28
• Worth 4/40 points, you need to make progress on Phase 0 and 1
(easier parts)

• Final Deadline Mar 8 (Mon)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Dictionaries

Learning Objectives

•Dictionaries are a new type in Python
•Lists let us index a value by a number, or position.
•Dictionaries let us index data by other kinds of data.

4

Dictionaries

•Constructors:
•dict(<list of 2-tuples>)
•dict(<key>=<val>, ...) # like kwargs
•{ <key exp>:<val exp>, … }
•{ <key>:<val> for <iteration expression> }
•>>> {x:y for x,y in zip(["a","b"],[1,2])}
•{'a': 1, 'b': 2}

•Selectors: <dict>[<key>]
•<dict>.keys(), .items(), .values()
•<dict>.get(key [, default])

•Operations:
• Key in, not in, len, min, max
• <dict>[<key>] = <val>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

person = { 'name': 'Michael' }
person.get('name')
person['email'] = 'ball@berkeley.edu'
person.keys()
'phone' in person

text = 'One upon a time'
{ word : len(word) for word in text.split() }

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Mutability

Learning Objectives

•Distinguish between when a function mutates data, or returns a new
object
• Many Python "default" functions return new objects
•Understand modifying objects in place
•Python provides “is” and “==” for checking if items are the same, in
different ways

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why does Mutability Matter?

• Mutable data is a reality — lists, dictionaries, objects (coming soon)
• It's a challenging aspect of programming
• There are common patterns, which you will slowly become familiar
with and internalize.
• Use your environment diagrams!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Objects in Python

•An object is a bundle of data and behavior.
•A type of object is called a class.
•Every value in Python is an object.
• string, list, int, tuple, et

•All objects have attributes
•Objects often have associated methods
• lst.append(), lst.extend(), etc

•Objects have a value (or values)
• Mutable: We can change the object after it has been created
• Immutable: We cannot change the object.

•Objects have an identity, a reference to that object.
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Immutable Object: string

•course = 'CS88'

•What kind of object is it?
• type(course)

•What data is inside it?
• course[0]
• course[2:]

•What methods can we call?
• course.upper()
• course.lower()

•None of these methods modify our original string.

Dictionaries are Mutable, too

• Immutable – the value of the object cannot be changed
•integers, floats, booleans
•strings, tuples

•Mutable – the value of the object can change
•Lists
•Dictionaries

>>> alist = [1,2,3,4]
>>> alist
[1, 2, 3, 4]
>>> alist[2]
3
>>> alist[2] = 'elephant'
>>> alist
[1, 2, 'elephant', 4]

>>> adict = {'a':1, 'b':2}
>>> adict
{'b': 2, 'a': 1}
>>> adict['b']
2
>>> adict['b'] = 42
>>> adict['c'] = 'elephant'
>>> adict
{'b': 42, 'c': 'elephant', 'a':
1}

Mutable Objects: lists and dictionaries

Dictionaries – by example
Constructors:

dict(hi=32, lo=17)
dict([('hi',212),('lo',32),(17,3)])
{'x':1, 'y':2, 3:4}
{wd : len(wd) for wd in "The quick brown fox".split()}

Selectors:
water['lo']
<dict>.keys(), .items(), .values()
<dict>.get(key [, default])

Operations:
in, not in, len, min, max
'name' in course

Mutators
course['number'] = 'C88C'
course.pop('room')
del course['room']

Dictionaries

Immutability vs Mutability

•An immutable value is unchanging once created.
• Immutable types (that we've covered): int, float, string, tuple

a_string = "Hi y'all"
a_string[1] = "I" # ERROR
a_string += ", how you doing?"
an_int = 20
an_int += 2

•A mutable value can change in value throughout the course of computation. All
names that refer to the same object are affected by a mutation.
•Mutable types (that we've covered): list, dict

grades = [90, 70, 85]
grades_copy = grades # Not actually a copy!
grades[1] = 100 # grades_copy changes too!
words = {"agua": "water"}
words["pavo"] = "turkey"

From value to storage …

•A variable assigned a compound value (object) is a reference to that object.
•Mutable objects can be changed but the variable(s) still refer to it
• x is still the same object, but it's values have changed.

x = [1, 2, 3]
y = 6

•x:

y: 6

…

frame 1 • 2 • 3 •6

x[1] = y
x[1]

Mutation in Environments

Mutating Lists: Example functions of the list class
•append() adds a single element to a list:
s = [2, 3]
t = [5, 6]
s.append(4)
s.append(t)
t = 0

Try in PythonTutor.
•extend() adds all the elements in one list to another list:
s = [2, 3]
t = [5, 6]
s.extend(4) # 🚫 Error: 4 is not an iterable!
s.extend(t)
t = 0

Try in PythonTutor. (After deleting the bad line)

http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

Mutating Lists -- More Functions!

•list += [x, y, z] # just like extend.
• You need to be careful with this one! It modifies the list.

•pop() removes and returns the last element:
s = [2, 3]
t = [5, 6]
t = s.pop()

Try in PythonTutor.
•remove() removes the first element equal to the argument:
s = [6, 2, 4, 8, 4]
s.remove(4)

Try in PythonTutor.

https://stackoverflow.com/questions/2347265/why-does-behave-unexpectedly-on-lists
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

Mutation makes sharing visiblePython Tutor: Assignments Are References

Mutable Data Inside Immutable Objects

•Mutable objects can "live" inside immutable objects!
•An immutable sequence may still change if it contains a mutable
value as an element.
• Be very careful, and probably do notdo this!

t = (1, [2, 3])
t[1][0] = 99
t[1][1] = "Problems"
•Try in PythonTutor

http://pythontutor.com/composingprograms.html

Equality vs Identity

list1 = [1,2,3]
list2 = [1,2,3]

• Equality: exp0 == exp1
evaluates to True if both exp0 and exp1 evaluate to objects containing equal values (Each
object can define what == means)

list1 == list2 # True
• Identity: exp0 is exp1
evaluates to True if both exp0 and exp1 evaluate to the same object
• Identical objects always have equal values.

list1 is list2 # False
•Try in PythonTutor.

http://pythontutor.com/composingprograms.html

Copies, 'is' and '=='

How do we know if two names (variables) are the same exact object? i.e. Will modifying one
modify the other?

>>> alist = [1, 2, 3, 4]
>>> alist == [1, 2, 3, 4] # Equal values?
True
>>> alist is [1, 2, 3, 4] # same object?
False
>>> blist = alist # assignment refers
>>> alist is blist # to same object
True
>>> blist = list(alist) # type constructors copy
>>> blist is alist
False
>>> blist = alist[:] # so does slicing
>>> blist is alist
False
>>> blist
[1, 2, 3, 4]
>>>

Identity and == vs is

What is the meaning of is?

• is in Python means two items have the exact same identity
• Thus, a is b implies a == b
• Why? Each object has a function id() which returns its "address"
• We won't get into what this means, but it's essentially an internal
"locator" for that data in memory.
• Think of two houses which have the exact same floor plan, look the
same, etc. The are "the same house" but each have a unique
address. (And thus are different houses)

• Think this is tricky? cool? amazing?
• Take CS61C (Architecture) and CS164 (Programming Languages)

Computational Structures in Data Science

Passing Data Into Functions

Learning Objectives

• Passing in a mutable object in a function in Python lets you modify
that object
• Immutable objects don't change when passed in as an argument
• Making a new name doesn't affect the value outside the function
• Modifying mutable data does modify the values in the parent
frame.

Mutating Arguments

•Functions can mutate objects passed in as an argument

•Declaring a new variable with the same name as an argument only exists within the
scope of our function

• You can think of this as creating a new name, in the same way as redefining a variable.
• This will not modify the data outside the function, even for mutable objects.

• BUT

• We can still directly modify the object passed in…even though it was created in some
other frame or environment.
• We directly call methods on that object.

•View Python Tutor

https://pythontutor.com/cp/composingprograms.html

Understanding Python: What should we return?

•Why do some functions return None?
•Why do some functions return a value?

Functions that mutate an argument usually return None!

C88C / 61A / Data Science View: Avoid mutating data unless
it's necessary!
Mutations are useful, but can get confusing quickly. This is why we
focus on functional programming - map, filter, reduce, list
comprehensions, etc.

Functions that Mutate vs Return New Objects

• Lists:
• sorted(list) – retiurns a new list
• list.sort() – modifies the list, returns None
• list.append() – modifies the list, returns None
• list.extend() – modifies the list, returns None

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python Gotcha's: a += b and a = a + b

def add_data_to_thing(thing, data):
print(f"+=, Before: {thing}")
thing += data
print(f"+=, After: {thing}")
return thing

def new_thing_with_data(thing, data):
print(f"=, Before: {thing}")
thing = thing + data
print(f"=, After: {thing}")
return thing

• Sometimes similar looking operations have very different results!
• Why?
• = always binds (or re-binds) a value to a name.
• Python Tutor

https://pythontutor.com/cp/composingprograms.html

Computational Structures in Data Science

Mutable Functions

Learning Objectives

• Remember: Each function gets its own new frame
• Inner functions can access data in the parent environment
• Use an inner function along with a mutable data type to capture
changes

Making Functions that Capture and change state

• We want to make a function, which returns a function that can change the state.
• Python Tutor Link
def make_counter():

counter = [0]
def count_up():

counter[0] += 1
return counter

return count_up

c = make_counter()
print(c)
c()
c()
c()

https://pythontutor.com/cp/composingprograms.html

Functions with Changing State

•Goal: Use a function to repeatedly withdraw from a bank account
that starts with $100.
• Build our account: withdraw =
make_withdraw_account(100)
•First call to the function:
withdraw(25) # 75
•Second call to the function:
withdraw(25) # 50
•Third call to the function:
withdraw(60) # 'Insufficient funds'

How Do We Implement Bank Accounts?

•A mutable value in the parent frame can maintain the local state for a function.
• View in PythonTutor
def make_withdraw_account(initial):

balance = [initial]

def withdraw(amount):
if balance[0] - amount < 0:

return 'Insufficient funds'
balance[0] -= amount
return balance[0]

return withdraw

https://pythontutor.com/composingprograms.html

Implementing Bank Accounts

•A mutable value in the parent frame can maintain the local state for a function.
def make_withdraw_account(initial):

balance = [initial]

def withdraw(amount):
if balance[0] - amount < 0:

return 'Insufficient funds'
balance[0] -= amount
return balance[0]

return withdraw
View in PythonTutor

https://pythontutor.com/composingprograms.html

