
Computational Structures in Data Science

Environments and Lambdas

Functional Sequence (List) Operations

•Goal: Transform a sequence, and return a new result
•We'll use 3 functions that are hallmarks of functional programming
•Each of these takes in a function and a sequence as arguments

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Function Action Input arguments Input Fn. Returns Output

map Transform every
item 1 (each item) "Anything", a new

item

List: same length,
but possibly new
values

filter Return a list with
fewer items 1 (each item) A Boolean

List: possibly fewer
items, values are
the same

reduce "Combine" items
together

2 (current item, and
the previous result)

Type should
match the type
each item

A "single" item

Computational Structures in Data Science

Functions That Return Functions

Learning Objectives

•Learn how to use and create higher order functions:
•Functions can be used as data
•Functions can accept a function as an argument
•Functions can return a new function

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Review: What is a Higher Order Function?

•A function that takes in another function as an argument

OR

•A function that returns a function as a result.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

• A function that returns (makes) a function

def leq_maker(c):
 def leq(val):
 return val <= c
 return leq

>>> leq_maker(3)
<function leq_maker.<locals>.leq at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> [x for x in range(7) if leq_maker(3)(x)]
[0, 1, 2, 3]

Higher Order Functions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Inner or Nested Functions

• Inner functions are scoped – they are not visible to the outside
world
• But they can be returned and thus called later on.
• Like a "regular" function, they have access to all the data (including
arguments) of their "parent" or "container" function.

•This can become messy!
•In the next section, we will formalize the rules.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Environment Diagrams

Why focus on environments?

• Environments are a simplification of why Python actually does
• Focus on building intuition for what will happen when you run code
• Sometimes tedious, but the practice helps you solve hard questions
• In 88C (or 61A), even our hard questions are pretty short
• Outside of class, things can get complex quickly.
• Every programming language is a bit different, but these rules are
quite common
• I understand if you don't like them now. J

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python Tutor Example #1

a = "chipotle"
b = 5 > 3
c = 8
def foo(c):

return c - 5
def bar():

if b:
a = "taco bell"

result1 = foo(10)
result2 = bar()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

•Primitives and Functions: Environment Diagram Python Tutor:

https://pythontutor.com/composingprograms.html

Environment Diagrams

•Organizational tools that help you understand code
•Terminology:
•Frame: keeps track of variable-to-value bindings, each function call
has a frame
•Global Frame: global for short, the starting frame of all python
programs, doesn’t correspond to a specific function
•Parent Frame: The frame of where a function is defined (default
parent frame is global)
•Frame number: What we use to keep track of frames, f1, f2, f3, etc
•Variable vs Value: x = 1. x is the variable, 1 is the value

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Environment Diagrams Rules

1. Always draw the global frame first
2. When evaluating assignments (lines with single equal), always evaluate right

side first
3. When you CALL a function MAKE A NEW FRAME!
4. When assigning a primitive expression (number, boolean, string) write the

value in the box
5. When assigning anything else (lists, functions, etc.), draw an arrow to the

value
6. When calling a function, name the frame with the intrinsic name – the name

of the function that variable points to
7. The parent frame of a function is the frame in which it was defined in

(default parent frame is global)
8. If the value for a variable doesn’t exist in the current frame, search in the

parent frame
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python Tutor Example #2

def make_adder(n):
def adder(k):

return k + n
return adder

n = 10
add_2 = make_adder(2)
x = add_2(5)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

•make_adder Higher Order Function: Environment Diagram Python Tutor Link

https://pythontutor.com/composingprograms.html

Python Tutor Example #3

add_2 = make_adder(2)
add_3 = make_adder(3)
x = add_2(2)
def compose(f, g):

def h(x):
return f(g(x))

return h
add_5 = compose(add_2, add_3)
z = add_5(x)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

•Compose Python Tutor Link

https://pythontutor.com/composingprograms.html

Demo

Example 1:
•make_adder Higher Order Function: Environment Diagram Python Tutor Link
Example 2:
•Primitives and Functions: Environment Diagram Python Tutor:
Example 3:
•Compose Python Tutor Link

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html

Environment Diagram Tips / Links

•NEVER draw an arrow from one variable to another.
•Useful Resources:
•http://markmiyashita.com/cs61a/environment_diagrams/rules_of_e
nvironment_diagrams/
•http://albertwu.org/cs61a/notes/environments.html

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why focus on environments?

• Environments are a simplification of why Python actually does
• Focus on building intuition for what will happen when you run code
• Sometimes tedious, but the practice helps you solve hard questions
• In 88C (or 61A), even our hard questions are pretty short
• Outside of class, things can get complex quickly.
• Every programming language is a bit different, but these rules are
quite common

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lambda Expressions

Learning Objectives

•Lambda are anonymous functions, which are expressions
•Don’t use return, lambdas always return the value of the
expression.
•They are typically short and concise
•They don’t have an “intrinsic” name when using an environment
diagram.
• Their name is the character 𝜆

Why Use lambda?

• We often can use the behavior of simple function!
• Using functions gives us flexibility
• "Inline" functions are faster/easier to write, and sometimes require
less reading.
• They're not "reusable", but that's OK!

21

lambda

Function expression
“anonymous” function creation

Expression, not a statement, no return or any other statement

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

lambda <arg or arg_tuple> : <expression using args>

add_one = lambda v : v + 1 def add_one(v):
 return v + 1

Examples

>>> def make_adder(i):

... return lambda x: x+i

...

>>> make_adder(3)

<function make_adder.<locals>.<lambda> at
0x10073c510>

>>> make_adder(3)(4)

7

>>> list(map(make_adder(3), [1,2,3,4]))
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

• A function that returns (makes) a function

def leq_maker(c):
 return lambda val: val <= c

>>> leq_maker(3)
<function leq_maker.<locals>.<lambda> at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> filter(leq_maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]

Lambda with HOFs

More Python HOFs

• sorted – sorts a list of data
• min
• max
All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key = lambda x: -x)

key is the name of the argument and a lambda is its value.
fruits = ["pear", "grape", "KIWI", "APPLE", "melon",
"ORANGE", "BANANA"]
sorted(key=lambda x: x.lower())

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Sorting Data

•It is often useful to sort data.
•What property should we sort on?
• Numbers: We can clearly sort.
•What about the length of a word?
•Alphabetically?
•What about sorting a complex data set, but 1 attribute?
• Image I have a list of courses: I could sort be course name, number of units,
start time, etc.

•Python provides 1 function which allows us to provide a lambda to
control its behavior

Sorting with Lambdas

>>> sorted([1,2,3,4,5], key = lambda x: x)
[1, 2, 3, 4, 5]

>>> sorted([1,2,3,4,5], key = lambda x: -x)
[5, 4, 3, 2, 1]

Nonsensical pairing of numbers and words…
>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "it")],

key = lambda x:x[0])
[(1, 'how'), (2, 'hi'), (5, 'goes'), (7, 'it')]
>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "it")],

key = lambda x:x[1])
[(7, 'it'), (5, 'goes'), (2, 'hi'), (1, 'how')]

>>> sorted([(2,"hi"),(1,"how"),(5,"goes"),(7,"it")],
key = lambda x: len(x[1]))

[(7, 'it'), (2, 'hi'), (1, 'how'), (5, 'goes')]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Environment Diagrams

Revisiting Environments

def make_adder(n):
return lambda k: k + n

add_2 = make_adder(2)
add_3 = make_adder(3)
x = add_2(5)
y = add_3(x)

29

Revisiting Environments: compose w/lambda

def make_adder(n):
return lambda k: k + n

def compose(f, g):
return lambda x: f(g(x))

add_2 = make_adder(2)
add_3 = make_adder(3)
add_5 = compose(add_2, add_3)

x = add_2(2)
z = add_5(x)

30

Environment Diagrams

•Organizational tools that help you understand code
•Terminology:
•Frame: keeps track of variable-to-value bindings, each function call
has a frame
•Global Frame: global for short, the starting frame of all python
programs, doesn’t correspond to a specific function
•Parent Frame: The frame of where a function is defined (default
parent frame is global)
•Frame number: What we use to keep track of frames, f1, f2, f3, etc
•Variable vs Value: x = 1. x is the variable, 1 is the value

Environment Diagrams Rules

1. Always draw the global frame first
2. When evaluating assignments (lines with single equal), always evaluate right

side first
3. When you CALL a function MAKE A NEW FRAME!
4. When assigning a primitive expression (number, boolean, string) write the

value in the box
5. When assigning anything else (lists, functions, etc.), draw an arrow to the

value
6. When calling a function, name the frame with the intrinsic name – the name

of the function that variable points to
7. The parent frame of a function is the frame in which it was defined in

(default parent frame is global)
8. If the value for a variable doesn’t exist in the current frame, search in the

parent frame
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Example 1:
•make_adder Higher Order Function: Environment Diagram Python Tutor Link
Example 2:
•Compose Python Tutor Link

https://pythontutor.com/cp/composingprograms.html
https://pythontutor.com/cp/composingprograms.html

