
Computational Structures in Data Science

Lecture 4: Sequences and for Loops

Announcements

Concurrent Enrollment / BGA Students:
- Working on expanding the class, should happen next week
- All CE/BGA should get in
- Everyone else: Expanding the class by ~20 seats.

Computational Structures in Data Science

Iteration with while Loops

Learning Objectives

•Use a while loop to repeat some task.
•Write an expression to control when a while loop stops executing

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

while Statement – Iteration Control

•Repeat a block of statements until a predicate expression is not
satisfied
• At the "end" of the body, we re-evaluate the expression, and
continue as long as it True
• Like conditionals and functions, we indent the body one level

<initialization statements>

while <predicate expression>:
 <body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Sum The Numbers

•This is a task we'll see many times!
• The sum of 1 to 10 (inclusive) is 55. A useless, but useful, fact.

total = 0
n = 1
while n <= 10:

total += n
n += 1

print(total)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

While Loops and Text

• Index is the name used to track a position in some sequence.
• We can "index into" a string to get an individual letter
• text[0] == "H"

text = "Hello, C88C!"
index = 0
while index < len(text):

print(text[index])
index += 1 # Same as index = index += 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Sum The Numbers As a Function

def sum_to_n(n):
"""
>>> sum_to_n(10)
55
"""
total = 0
i = 1
while i <= n:

total += i
i += 1

return total
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Sum The Numbers As a Function

def sum_to_n_down(n):
"""
>>> sum_to_n_down(10)
55
"""
total = 0
while n > 0:

total += n
n -= 1

return total

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

for Loops

Learning Objectives: Using Lists in Practice

•for Loops are a ”generic” way to iterate over data.
• Compare a for loop and a while loop.
• Learn to use range()
• Use a string as a sequence of letters

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

REVIEW: while statement – iteration control

•Repeat a block of statements until a predicate expression is satisfied
<initialization statements>

while <predicate expression>:
 <body statements>

<rest of the program>

Equivalent to a for loop:
text = "Hello, C88C!"
index = 0
while index < len(text):
 letter = text[index]
 print(letter)
 index += 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

for Statement – Iteration Control

•Repeat a block of statements for a structured sequence of variable
bindings

<initialization statements>

for <variables> in <sequence expression>:
 <body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Live Coding Demo

text = "Hello, C88C!"

index = 0

while index < len(text):

letter = text[index]

print(letter)

index += 1

for letter in text:

print(letter)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Live Coding Demo

index = 0

while index < 10:

print(index)

index += 1

for index in range(0, 10):

print(index)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Iteration with for Loops

Learning Objectives: Using Lists in Practice

•for Loops are a ”generic” way to iterate over data.
• Compare a for loop and a while loop.
• Learn to use range()
• Use a string as a sequence of letters

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

REVIEW: while statement – iteration control

•Repeat a block of statements until a predicate expression is satisfied
<initialization statements>

while <predicate expression>:
 <body statements>

<rest of the program>

text = "Hello, C88C!"
index = 0
while index < len(text):
 letter = text[index]
 print(letter)
 index += 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

for Statement – Iteration Control

Repeat a block of statements for a structured sequence of variable
bindings

<initialization statements>

for <variables> in <sequence expression>:
 <body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

<sequence expression> — What's that?

•Common sequences:
• range() – give me all the numbers
• Strings, e.g, "Hello, C88C!"
• What is it a sequence of? Characters!

• lists (next!)
•We'll start with two basic facts:
• range(10) is the numbers 0 to 9, or range(0, 10)
• for loops (transparently) iterate 1 item at time

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Comparing Loops

text = "Hello, C88C!"

index = 0

while index < len(text):

letter = text[index]

print(letter)

index += 1

for letter in text:

print(letter)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Live Coding Demo

index = 0

while index < 10:

print(index)

index += 1

for index in range(0, 10):

print(index)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Summing 1 to N (Again)

def sum_to_n(n):
total = 0
for num in range(0, n + 1):

total += num
return total

def sum_to_n_down(n):
total = 0
for num in range(n, 0, -1):

total += num
return total

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Sequences

Sequences [Docs]

•The term sequence refers generally to a data structure consisting of
an indexed collection of values, which we’ll generally call elements.
•That is, there is a first, second, third value (which CS types call #0,
#1, #2, etc.)

•A sequence may be finite (with a length) or infinite.
•It may be mutable (elements can change) or immutable.
•It may be indexable: its elements may be accessed via selection by
their indices.
•It may be iterable: its values may be accessed sequentially from first
to last.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/library/stdtypes.html

<sequence expression> — What's that?

•Common sequences:
•range() – give me all the numbers
•Strings, e.g, "Hello, C88C!"
• What is it a sequence of? Characters!

•lists (next!)
•We'll start with two basic facts:
• range(10) is the numbers 0 to 9, or range(0, 10)
• [] means "indexing" an item in a sequence.
• "Hello"[0] == "H"

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Common Sequences

•There are many types of sequences in Python.
• range
• string (text data)
• list
• tuple
• Sequences all share some common properties.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

range

•range() is a built in Python tool that generates a sequence of
numbers.
•It does not return a list unless we explicitly ask for one.

• It has many options: start, stop, and step.
• Range is lazy! It can be iterated over, but doesn’t compute all its
values at once.
•We’ll revisit this later.

•GOTCHA: Range is exclusive in the last value!
•range(10) is a sequence on 10 numbers from 0 to 9.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Sequence Operations

Operation Result
x in s True if an item of s is equal to x, else False
x not in s False if an item of s is equal to x, else True
s + t the concatenation of s and t
s * n or n * s equivalent to adding s to itself n times
s[i] ith item of s, origin 0
s[i:j] slice of s from i to j
s[i:j:k] slice of s from i to j with step k
len(s) length of s
min(s) smallest item of s
max(s) largest item of s
s.index(x[, i[, j]]) index of the first occurrence of x in s (at or after index i and before index j)
s.count(x) total number of occurrences of x in s

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Live Coding Demo

sum(range(0, 11))

def sum_to_n(n):
return sum(range(0, n + 1))

text = 'Hello, C88C!'
len(text)
text.count('l')
text.count(8)
text.count('8')

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists

Learning Objectives

•Lists are a new data type in Python.
•Lists can store any kind of data and be any length.
•We start counting items of lists at 0.
•Lists are mutable. We can change their data!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lists

•A structure in Python that can hold many elements
•Also referred to an an “array” in other programming languages.
•Lists are used to group similar items together.
•A “contact list”, a “list of courses”, a “to do list”
•Python lists are really flexible!
•Can contain any type of data
•Can mix and match types!
•Can add and delete items

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Types We’ve Learned So Far

•Each type of data has a specific set of functions (methods) you can
apply to them, and certain properties you can access.
•int / Integers

• 1, -1, 0, …
• float (“decimal numbers”)

• 1.0, 3.14159, 20.0
• string

• "Hello, CS88"
•function

•max(), min(), print(), your own functions!
• list

• ['CS88', 'DATA8', 'POLSCI2', 'PHILR1B’]

List Operations [Python Docs!]

•[] ”square brackets”: Used to access items in a list. We start at 0!
• len(): The number of items in a list
•+: We can add lists together
•min(), max(): Functions that take in a list and return some info.
•Converting between types: Strings and Lists:
•<string>.split(<separator>) → List of strings
•'I am taking CS88.'.split(' ')

•<string>.join(<list>) → String, with the items of a list joined together.
•' '.join(['I', 'am', 'taking', 'C88C.'])

•Lots more interesting tools!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

Selecting Elements From a List (A Reference, Don't Memorize
Yet!)
• Selection refers to extracting elements by their index.
• Slicing refers to extracting subsequences.
• These work uniformly across sequence types.
L = [2,0,9,10,11]
S = "Hello, world!"
L[2]== 9
L[-1] == L[len(t)-1] == 11
S[1] == "e" # Each element of a string is a one-element string.
L[1:4] == (L[1], L[2], L[3]) == (0, 9, 10)
S[1:2] == S[1] == "e"
S[0:5] == "Hello", S[0:5:2] == "Hlo", S[4::-1] == "olleH"

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Rules of Indexing & Slicing

•We start counting from 0.
•You will mess this up. We all do. It's ok.
•There's lots of bad dad jokes about this. J

•Python provides flexibility but can be confusing.
•[0] means the first item
•[-1] means the last item, [-2] 2nd to last, and so on

•Slicing: The last value is exclusive!
•[:stop], e.g. my_list[:5] # items 0-4
•[start:stop], e.g. my_list[2:5] # items 2,3,4
•[start:stop:step] e.g. my_list[0:8:2] # items 0,2,4,6

Sequence Operations (Review and Reference)

Operation Result
x in s True if an item of s is equal to x, else False
x not in s False if an item of s is equal to x, else True
s + t the concatenation of s and t
s * n or n * s equivalent to adding s to itself n times
s[i] ith item of s, origin 0
s[i:j] slice of s from i to j
s[i:j:k] slice of s from i to j with step k
len(s) length of s
min(s) smallest item of s
max(s) largest item of s
s.index(x[, i[, j]]) index of the first occurrence of x in s (at or after index i and before index j)
s.count(x) total number of occurrences of x in s

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Demo

39

Computational Structures in Data Science

List Comprehensions

Learning Objectives

•List comprehensions let us build lists "inline".
•List comprehensions are an expression that returns a list.
•We can easily “filter” the list using a conditional expression, i.e. if

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Data-driven iteration

•describe an expression to perform on each item in a sequence
•let the data dictate the control
•In some ways, nothing more than a concise for loop.

[<expr with loop var> for <loop var> in <sequence expr >]

[<expr with loop var> for <loop var> in <sequence expr >
if <conditional expression with loop var>]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

