
Computational Structures in Data Science

Lecture 3:
Functions and Loops

Announcements

• Lab Attendance: Autograder is still a WIP
• But if you attended lab, filled out a code, you only need it to say 2/4
• We're working on making it more clear very son.
• Earning points is based on correctness
• You get as many tries as you need, but the results must work, at the
end of the day.
• If you need an extension, you can ask for one, but be careful with
time. J

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Learning Process & Debugging

Process NOT Memorization

• This is not a class about memorization.
• This is a class about problem solving and process.
• You will not know everything, but you will be able to figure it out.
• Focus on building intuition!
• Predict what will happen first
•Then try and inspect
• Now, Figure out why!
• Was your prediction correct or incorrect?

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Python: Definition

Learning Objectives

•Create your own functions.
•Write a loop to run the same code multiple times
•Use conditionals to control when a loop stops

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Let’s talk Python

•Expression 3.1 * 2.6

•Call expression max(0, x)

•Variables my_name

•Assignment Statement my_name = <expression>

•Define Statement: def function_name(<arguments>):
•Control Statements: if …

for …
while …

•Comments # Text after the # is ignored.

7

Variables In Python

•Variables "bind" (or assign) a name to a value (or expression)
•Variables can also come from function arguments
•Python has some specific rules about names…
• Don't memorize them all!
•Mostly: No spaces, use _
•Important: Use meaningful names!
•It's a bit embarrassing to come to OH and try to explain the purpose
of "butt" J (This actually happened!)

• my_favorite_class = 'C88C'

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functions in Python

•We "define" them with def
•We typically name_them_using_underscores ("Snake case")
•The first line ends in a :
•The body is indented by 4 spaces
•Arguments (parameters) create 'names' that exist only in our function
•Most functions will return a value, but some do not.
def print_greet(name):

print("Hello, " + name)
def greet(name):

return "Hello, " + name
Michael Ball | UC Berkeley | h?ps://c88c.org | © CC BY-NC-SA

Aside: String and Text

• Strings, or sequences of text are incredibly common!
• In Python we use ' or ''
•We combine strings with +, or by using string interpolation:
• f-strings allow us to embed an expression inside some text!

def print_greet(name):
print("Hello, " + name)
print(f"Hello, {name}")

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Defining Functions

•Abstracts an expression or set of statements to apply to lots of
instances of the problem
•A function should do one thing well
• arguments become accessible inside the function body.

expression

def <function name> (<argument list>) :

return

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functions: Example

•>>> y = 5
•>>> x = 3
•>>> z = max(3, 5) * 10
•>>> z
•50

def max(x, y):
 if x > y:
 return (x)
 else:
 return (y)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Returns and Values

•All functions always return SOME value.
•If you don’t specify return, the value is None.
•Using print does not change how the function works, but does affect
the output.

Michael Ball | UC Berkeley | h?ps://c88c.org | © CC BY-NC-SA

Functions: Calling and Returning Results

Python Tutor

def max(x, y):
 if x > y:
 return x
 else:
 return y
x = 3
y = 4 + max(17, x + 6) * 0.1
z = x / y

Michael Ball | UC Berkeley | h?ps://c88c.org | © CC BY-NC-SA

http://pythontutor.com/composingprograms.html

Doctests

•Write the docstring to explain what it does
•What does the function return? What are corner cases for parameters?

def max(x, y):
"""Returns the larger value of arguments x and y
>>> max(6, 0)
6
"""

return x if x > y else y
•Write doctest to show what it should do
•Before you write the implementation.
•python3 –m doctest [-v] file.py

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Python: Control Flow

CondiKonal Statement

•Do some statements, conditional on a predicate expression

•Example:

if <predicate>:
 <true statements>
else:
 <false statements>

if temperature > 98.6:
 print(“fever!”)
else:
 print(“no fever”)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Live Coding Demo

course = 'C88C'
time = '2:00'
if time == '2:00':

print(f"Go to {course}")
else:

print("Go get some ☕")

Go to C88C

Conditional Expression Shorthuand

• Return a Value Based on some condition

•Example:

<true expression> if <predicate> else <false expression>

status = "it's hot!" if temperature > 85 'not hot…'

Michael Ball | UC Berkeley | h?ps://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Itera>on with while Loops

Learning Objectives

•Use a while loop to repeat some task.
•Write an expression to control when a while loop stops executing

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

while Statement – IteraKon Control

•Repeat a block of statements until a predicate expression is satisfied
<initialization statements>

while <predicate expression>:
 <body statements>

<rest of the program>

Michael Ball | UC Berkeley | h?ps://c88c.org | © CC BY-NC-SA

Sum The Numbers

•This is a task we'll see many times!

total = 0
n = 1
while n <= 10:
 total += n
 n += 1
print(total)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computa2onal Structures in Data Science

Iteration With for Loops

Learning Objectives

•Compare a for loop and a while loop.
•Learn to use range()
•Use a string as a sequence of letters

Michael Ball | UC Berkeley | h?ps://c88c.org | © CC BY-NC-SA

for Statement – IteraKon Control

•Repeat a block of statements for a structured sequence of variable
bindings
<initialization statements>

for <variables> in <sequence expression>:
 <body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

<sequence expression> — What's that?

•Sequences are a type of data that can broken down into smaller
parts.
•Common sequences:
•range() – give me all the numbers
•Strings, e.g, "Hello, C88C!"
• What is it a sequence of? Characters!

•lists (next!)
•We'll start with two basic facts:
• range(10) is the numbers 0 to 9, or range(0, 10)
• [] means "indexing" an item in a sequence.
• "Hello"[0] == "H"Michael Ball | UC Berkeley | h?ps://c88c.org | © CC BY-NC-SA

Data-Driven IteraKon

•describe an expression to perform on each item in a sequence
•let the data dictate the control

[<expr with loop var> for <loop var> in <sequence expr >]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

