Computational Concepts Toolbox

- Data type: values, literals, operations,
- Expressions, Call expression
- Variables
- Assignment Statement
- Sequences: tuple, list
- Dictionaries
- Data structures
- Tuple assignment
- Function Definition Statement
- Conditional Statement
- Iteration: list comp, for, while
- Lambda function exp.
- Higher Order Functions
 - as Values, Args, Results
 - Higher order function patterns
 - Map, Filter, Reduce
 - Function factories
- Recursion
 - Linear, Tail, Tree
- Abstract Data Types
- Mutation
- Iterators and Generators
- Object Oriented Programming, Classes
- Exceptions
- Declarative Programming
- Distributed Computing

Recap: Complexity

- Example: Matrix Multiply
 - As a function of n?

```python
for i in 0 to n-1:
    for j in 0 to n-1:
        C[i][j] = 0
        for k in 0 to n-1:
            C[i][j] = C[i][j] + A[i][k]*B[k][j]
```

We say it is $O(n^3)$ "big-O of $n^3" as an asymptotic upper bound

time(n) < c \cdot n^3, for some suitably large constant c for any instance of the inputs of size n.

Administrivia

- This is the last lecture. Next week: Q&A for finals.
- Today: HKN review!
 Please do the survey and give us good grades! 😊
- Thank you:
 - TAs!
 - Lab Assistants!
 - UC Berkeley Staff!
A more subtle complexity example

- What is the “complexity” of finding the average number of factors of numbers up to n?

```python
def factors(n):
    return [x for x in range(2, max(n, ceil(sqrt(n)))) if n % x == 0]
def ave_factor(n):
    all_factors = map(factors, range(n))
    all_lens = map(len, all_factors)
    return sum(all_lens)/n
```

from timeit import default_timer as timer
def timeit(fun):
 """ Rtn timer for fun(i) in secs. """
 def timer_fun(i):
 start = timer()
 fun(i)
 end = timer()
 return (end-start)
 return timer_fun
```

How long does factors take?

```python
In [9]: tbl = Table().with_column('n', np.arange(0,1000,1))
tbl['factors'] = tbl.apply(factors, 'n')
tbl['n_factors'] = tbl.apply(len, 'factors')
tbl['secs'] = tbl.apply(timeit, 'factors', 'n')
tbl
```

Out[9]:
```
<table>
<thead>
<tr>
<th>n</th>
<th>factors</th>
<th>n_factors</th>
<th>secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>0.93</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>1.22</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>1.33</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>2.77</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0</td>
<td>2.47</td>
</tr>
<tr>
<td>6</td>
<td>[2, 3]</td>
<td>2</td>
<td>3.02</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0</td>
<td>2.79</td>
</tr>
<tr>
<td>8</td>
<td>[2, 3]</td>
<td>2</td>
<td>3.23</td>
</tr>
<tr>
<td>9</td>
<td>[2, 3]</td>
<td>1</td>
<td>3.74</td>
</tr>
</tbody>
</table>
```

... (990 rows omitted)

Big Data, Big Problems

- Performance terminology
  - the FLOP: FLoating point OPeration
  - “flops” = # FLOP/second is the standard metric for computing power

- Example: Global Climate Modeling
  - Divide the world into a grid (e.g. 10 km spacing)
  - Solve fluid dynamics equations for each point & minute
    - Requires about 100 Flops per grid point per minute
  - Weather Prediction (7 days in 24 hours):
    - 56 GFlops
  - Climate Prediction (50 years in 30 days):
    - 4.8 Tflops

- Perspective
  - Intel Core i7 980 XE Desktop Processor
    - ~100 GFlops
  - Climate Prediction would take ~5 years

What Can We Do? Use Many CPUs!

- Supercomputing – like those listed in top500.org
  - Multiple processors “all in one box / room” from one vendor that often communicate through shared memory
  - This is often where you find exotic architectures

- Distributed computing
  - Many separate computers (each with independent CPU, RAM, HD, NIC) that communicate through a network
    - Grids (heterogenous computers across Internet)
    - Clusters (mosty homogeneous computers all in one room)
    - Google uses commodity computers to exploit “knee in curve” price/performance sweet spot
    - It’s about being able to solve “big” problems, not “small” problems faster
    - These problems can be data (mostly) or CPU intensive
Recap: Filter, Map, Reduce

• Functions as Data
• Higher-Order Functions
• Useful HOFs (you can build your own!)
  - map function over list
    » Report a new list, every element e of list becoming function(e)
  - filter items such that predicate from list
    » Create a new list, keeping only elements e of list if predicate(e)
  - reduce with function over list
    » Combine all the elements of list with function(e)

• Example:
  filter → map → reduce

Google’s MapReduce Simplified

• Filter: Chunk data and send to different CPUs.
• Map: Apply function to data chunks on different CPUs.
• Reduce: Combine results from different CPUs.
  » Reducer should be associative and commutative
• Imagine 10,000 machines ready to help you compute anything you could cast as a MapReduce problem!
  » This is the abstraction Google is famous for authoring
  » The system takes care of load balancing, dead machines, etc.

MapReduce: Advantages/Disadvantages

• Now it’s easy to program for many CPUs
  » Communication management effectively gone
  » Fault tolerance, monitoring
    » machine failures, suddenly-slow machines, etc are handled
  » Can be much easier to design and program!
  » Can cascade several (many?) MapReduce tasks

• But… it might restrict solvable problems
  » Might be hard to express problem in MapReduce
  » Data parallelism is key
    » Need to be able to break up a problem by data chunks

Apache Spark (from Berkeley)

• Data processing system that provides a simple interface to analytics on large data
• A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
• Support the operations you are familiar with
  » Data-Parallel: map, filter, reduce
  » Database: join, union, intersect
  » OS: sort, distinct, count
• All of can be performed on RDDs that are partitioned across machines
Spark Execution Model

Processing is defined centrally and executed remotely
• A RDD is distributed over workers
• A driver program defines transformations and actions on RDDs
• A cluster manager assigns task to workers
• Workers perform computation, store data, & communicate with each other
• Final results communicate back to driver

Distributed Computing Challenges

• Communication is fundamental difficulty
  – Distributing data, updating shared resource, communicating results, handling failures
  – Machines have separate memories, so need network
  – Introduces inefficiencies: overhead, waiting, etc.

• Need to parallelize algorithms, data structures
  – Must look at problems from parallel standpoint
  – Best for problems whose compute times >> overhead

Speedup Issues: Amdahl’s Law

• Applications can almost never be completely parallelized; some serial code remains

\[
\text{Speedup} = \frac{\text{Time}(1)}{\text{Time}(P)} = \frac{1}{s + \left(\frac{1-s}{P}\right)}, \text{ and as } P \to \infty \leq 1/s
\]

s is serial fraction of program, P is # of cores (was processors)

Amdahl’s Law: Conclusion

• Computer Science View: Even if the parallel portion of your application speeds up perfectly, your performance will be limited by the sequential portion.

• Data Science View: Often, as the data gets large, the work that can be parallelized grows faster than the size of the data.

Fundamental Change in Perspective!
Summary: Data science

2.5 quintillion

https://www.youtube.com/watch?v=Tzmjbl-i4Y

Summary: CS88 a journey!

- Data type: values, literals, operations,
- Expressions, Call expression
- Variables
- Assignment Statement
- Sequences: tuple, list
- Dictionaries
- Data structures
- Tuple assignment
- Function Definition Statement
- Conditional Statement
- Iteration: list comp, for, while
- Lambda function expr.
- Higher Order Functions
  - as Values, Args, Results
- Higher order function patterns
  - Map, Filter, Reduce
  - Function factories
- Recursion
  - Linear, Tail, Tree
- Abstract Data Types
- Mutation
- Iterators and Generators
- Object Oriented Programming, Classes
- Exceptions
- Declarative Programming
- Distributed Computing

Final thought: A note of caution

Thank you so much!

https://www.youtube.com/watch?v=bqWuioPHhz0