Generators and lterators

David E. Culler
CS8 — Computational Structures in Data Science
http://inst.eecs.berkeley.edu/~cs88

Lecture 11
November 5, 2018

http://bit.ly/cs88-fa18-L11

Computational Concepts Toolbox

« Data type: values, literals, « Higher Order Functions
operations, — Functions as Values

. Expressions, call — Functions with functions as
expression argument

— Assignment of function values
Higher order function patterns
— Map, Filter, Reduce

Variables

Assignment Statement
Sequences: tuple, list
Dictionaries

Function factories — create and
return functions

Data structures

Recursion

Tuple assignment

Function Definition
5. Statement
Ty » Class

Conditional Statement - . .
Iteration: list comp, for, - Obje(.:! Oriented Programming
— Inheritance

while

Lambda function expr. * Exceptions
UCB CS88 SE18 L10

Abstract Data Types
Mutation

Administrative Issues

* Project 2 “Wheel” is out
— Part | due 11/10

 There will be no Project 3

* No lecture 11/12 due to holiday
— There will be lab Friday 11/16

UCB CS88 Sp18 L10

Today:

* Review Exceptions
* Sequences vs Iterables
« Using iterators without generating all the data

* Generator concept
— Generating an iterator from iteration with yield

» Magic methods
— next
— Iter

Iterators — the iter protocol

+ Getitem protocol

Is an object iterable?

 Lazy evaluation with iterators

UCB CS88 Sp18 L10

Summary of last week

» Approach creation of a class as a design
problem
— Meaningful behavior => methods [& attributes]
— ADT methodology
— What’s private and hidden? vs What'’s public?

» Design for inheritance
— Clean general case as foundation for specialized subclasses

* Use it to streamline development

« Anticipate exceptional cases and unforeseen
problems

— try ... catch
— raise / assert

UCB CS88 Sp18 L10

Key concepts to take forward

Classes embody and allow enforcement of ADT
methodology

* Class definition

+ Class namespace

* Methods

Instance attributes (fields)
Class attributes
Inheritance

 Superclass reference

UCB CS88 Sp18 L10

http://inst.eecs.berkeley.edu/~cs88
http://bit.ly/cs88-fa18-L11

Exception (read 3.3)

* Mechanism in a programming language to
declare and respond to “exceptional conditions”
— enable non-local cntinuations of control
+ Often used to handle error conditions

— Unhandled exceptions will cause python to halt and print a
stack trace

— You already saw a non-error exception — end of iterator

* Exceptions can be handled by the program
instead

—assert, try, except, raise statements
+ Exceptions are objects!

— They have classes with constructors

UCB CS88 Sp18 L10

Types of exceptions

e TypeError -- A function was passed the wrong
number/type of argument

¢ NameError -- A name wasn't found

¢ KeyError -- A key wasn't found in a dictionary

¢ RuntimeError -- Catch-all for troubles during
interpretation

def safe_apply_ fun(f,x):

try:
return f(x) # normal execution, return the result
except Exception as e: # exceptions are objects of class deri
return e # value returned on exception

def divides(x, y):

assert x != 0, "Bad argument to divides - denominator should be non-zero"
if (type(x) != int or type(y) != int):

raise TypeError("divides only takes integers")
return yix == 0

Handling Errors — try / except

* Wrap your code in try — except statements

try:
<try suite>
except <exception class> as <name>:
<except suite>
... # continue here if <try suite> succeeds w/o exception

» Execution rule
— <try suite> is executed first
— If during this an exception is raised and not handled otherwise
— And if the exception inherits from <exception class>
— Then <except suite> is executed with <name> bound to the
exception
» Control jumps to the except suite of the most

recent try that handles the exception
UCB CS88 SE1B L10

UCB CS88 Sp18 L10

Iterators - Notebook

http:/bit.ly/cs88-fa18-L11

UCB CS88 Sp18 L10

Exceptions are Classes

class NoiseyException(Exception):
def _ init_ (self, stuff):
print("Bad stuff happened", stuff)

try:
return fun(x)
except:
raise NoiseyException((fun, x))

UCB CS88 Sp18 L10

Iterable - an object you can iterate over
« jterable: An object capable of yielding its members

one at a time.

iterator. An object representing a stream of data.

» We have worked with many iterables as if they were
sequences

UCB CS88 Sp18 L10

Ny

http://bit.ly/cs88-fa18-L11

Functions that return iterables
* map

* range

* Zip

» These objects are not sequences.

« If we want to see all of the elements at once, we
need to explicitly call list() or tuple() on them

UCB CS88 Sp18 L10

Define objects that behave like
sequences

UCB CS88 Sp18 L10

Generators: turning iteration into an
interable

» Generator functions use iteration (for loops, while
loops) and the yield keyword

« Generator functions have no return statement, but
they don’t return None

» They implicitly return a generator object
» Generator objects are just iterators

def squares(n):
for i in range(n):
yield (i*i)

UCB CS88 Sp18 L10

Nest iteration

def all_pairs(x):
for iteml in x:
for item2 in x:
yield(iteml, item2)

UCB CS88 Sp18 L10

Next element in generator iterable

* lterables work because they have some "magic
methods" on them. We saw magic methods when
we learned about classes,

*eg.,_init_, repr__and__str _

 The first one we see for iterables is __next__

e iter() —transforms a sequence into an iterator

UCB CS88 Sp18 L10

Iterators — iter protocol

* In order to be iterable, a class must implement
the iter protocol

 The iterator objects themselves are required to
support the following two methods, which together
form the iterator protocol:

— __iter_ () : Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements.

— This method returns an iterator object, Iterator can be self

— _ next_ () : Return the next item from the container. If there are
no further items, raise the Stoplteration exception.

« Classes get to define how they are iterated over by
defining these methods

UCB CS88 Sp18 L10

W

Getitem protocol

» Another way an object can behave like a sequence

is indexing: Using square brackets “[]” to access

specific items in an object.

Defined by special method: __getitem (self, i)
— Method returns the item at a given index

class myrange2:
def _ init_ (self, n):
self.n = n

def _ getitem_ (self, i):
if i >= 0 and i < self.n:
return i
else:
raise IndexError

def _ len_ (self):
return self.n

UCB CS88 Sp18 L10

Computational Concepts Toolbox

« Data type: values, literals, « Higher Order Functions
operations, — Functions as Values

. Expressions, Call — Functions with functions as
expression argument

— Assignment of function values
Higher order function patterns
— Map, Filter, Reduce

Variables

Assignment Statement,
Tuple assignment

Sequences: tuple, list
Dictionaries

Function factories — create and
return functions

Recursion

Function Definition

Statement « Abstract Data Types
5, Conditional Statement * Mutation
% lteration: list comp, for, * Class & Inheritance
Ll + Exceptions

Lambda function expr.

Iterators & Generators

UCB CS88 Sp18 L10

Determining if an object is iterable

e from collections.abc import Iterable
e isinstance([1,2,3], Iterable)

+ This is more general than checking for any list of
particular type, e.g., list, tuple, string...

UCB CS88 Sp18 L10

