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Computational Concepts Toolbox

« Data type: values, literals, « Higher Order Functions
operations, — Functions as Values

. Expressions, call — Functions with functions as
expression argument

— Assignment of function values
Higher order function patterns
— Map, Filter, Reduce

Variables

Assignment Statement
Sequences: tuple, list
Dictionaries

Function factories — create and
return functions

Data structures

Recursion

Tuple assignment

Function Definition
5. Statement
Ty » Class

Conditional Statement - . .
Iteration: list comp, for, - Obje(.:! Oriented Programming
— Inheritance

while

Lambda function expr. * Exceptions
UCB CS88 SE18 L10

Abstract Data Types
Mutation

Administrative Issues

* Project 2 “Wheel” is out
— Part | due 11/10

 There will be no Project 3

* No lecture 11/12 due to holiday
— There will be lab Friday 11/16
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Today:

* Review Exceptions
* Sequences vs Iterables
« Using iterators without generating all the data

* Generator concept
— Generating an iterator from iteration with yield

» Magic methods
— next
— Iter

Iterators — the iter protocol

+ Getitem protocol

Is an object iterable?

 Lazy evaluation with iterators
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Summary of last week

» Approach creation of a class as a design
problem
— Meaningful behavior => methods [& attributes]
— ADT methodology
— What’s private and hidden? vs What'’s public?

» Design for inheritance
— Clean general case as foundation for specialized subclasses

* Use it to streamline development

« Anticipate exceptional cases and unforeseen
problems

— try ... catch
— raise / assert
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Key concepts to take forward

Classes embody and allow enforcement of ADT
methodology

* Class definition

+ Class namespace

* Methods

Instance attributes (fields)
Class attributes
Inheritance

 Superclass reference
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Exception (read 3.3)

* Mechanism in a programming language to
declare and respond to “exceptional conditions”
— enable non-local cntinuations of control
+ Often used to handle error conditions

— Unhandled exceptions will cause python to halt and print a
stack trace

— You already saw a non-error exception — end of iterator

* Exceptions can be handled by the program
instead

—assert, try, except, raise statements
+ Exceptions are objects!

— They have classes with constructors
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Types of exceptions

e TypeError -- A function was passed the wrong
number/type of argument

¢ NameError -- A name wasn't found

¢ KeyError -- A key wasn't found in a dictionary

¢ RuntimeError -- Catch-all for troubles during
interpretation

def safe_apply_ fun(f,x):

try:
return f(x) # normal execution, return the result
except Exception as e: # exceptions are objects of class deri
return e # value returned on exception

def divides(x, y):

assert x != 0, "Bad argument to divides - denominator should be non-zero"
if (type(x) != int or type(y) != int):

raise TypeError("divides only takes integers")
return yix == 0

Handling Errors — try / except

* Wrap your code in try — except statements

try:
<try suite>
except <exception class> as <name>:
<except suite>
... # continue here if <try suite> succeeds w/o exception

» Execution rule
— <try suite> is executed first
— If during this an exception is raised and not handled otherwise
— And if the exception inherits from <exception class>
— Then <except suite> is executed with <name> bound to the
exception
» Control jumps to the except suite of the most

recent try that handles the exception
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Iterators - Notebook
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Exceptions are Classes

class NoiseyException(Exception):
def _ init_ (self, stuff):
print("Bad stuff happened", stuff)

try:
return fun(x)
except:
raise NoiseyException((fun, x))
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Iterable - an object you can iterate over
« jterable: An object capable of yielding its members

one at a time.

iterator. An object representing a stream of data.

» We have worked with many iterables as if they were
sequences
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Functions that return iterables
* map

* range

* Zip

» These objects are not sequences.

« If we want to see all of the elements at once, we
need to explicitly call list() or tuple() on them
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Define objects that behave like
sequences
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Generators: turning iteration into an
interable

» Generator functions use iteration (for loops, while
loops) and the yield keyword

« Generator functions have no return statement, but
they don’t return None

» They implicitly return a generator object
» Generator objects are just iterators

def squares(n):
for i in range(n):
yield (i*i)
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Nest iteration

def all_pairs(x):
for iteml in x:
for item2 in x:
yield(iteml, item2)
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Next element in generator iterable

* lterables work because they have some "magic
methods" on them. We saw magic methods when
we learned about classes,

*eg.,_init_, repr__and__str _

 The first one we see for iterables is __next__

e iter( ) —transforms a sequence into an iterator
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Iterators — iter protocol

* In order to be iterable, a class must implement
the iter protocol

 The iterator objects themselves are required to
support the following two methods, which together
form the iterator protocol:

— __iter_ () : Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements.

— This method returns an iterator object, Iterator can be self

— _ next_ () : Return the next item from the container. If there are
no further items, raise the Stoplteration exception.

« Classes get to define how they are iterated over by
defining these methods
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Getitem protocol

» Another way an object can behave like a sequence

is indexing: Using square brackets “[ ]” to access

specific items in an object.

Defined by special method: __getitem (self, i)
— Method returns the item at a given index

class myrange2:
def _ init_ (self, n):
self.n = n

def _ getitem_ (self, i):
if i >= 0 and i < self.n:
return i
else:
raise IndexError

def _ len_ (self):
return self.n
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Computational Concepts Toolbox

« Data type: values, literals, « Higher Order Functions
operations, — Functions as Values

. Expressions, Call — Functions with functions as
expression argument

— Assignment of function values
Higher order function patterns
— Map, Filter, Reduce

Variables

Assignment Statement,
Tuple assignment

Sequences: tuple, list
Dictionaries

Function factories — create and
return functions

Recursion

Function Definition

Statement « Abstract Data Types
5, Conditional Statement * Mutation
% lteration: list comp, for, * Class & Inheritance
Ll + Exceptions

Lambda function expr.

Iterators & Generators
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Determining if an object is iterable

e from collections.abc import Iterable
e isinstance([1,2,3], Iterable)

+ This is more general than checking for any list of
particular type, e.g., list, tuple, string...
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