On Computer Science Exams

In computer science exams, we try to assess the student's understanding of concepts and his or her ability to practically apply these.

- In CS, we **do not**:
 - require extensive memorization (e.g., we allow cheat sheet)
 - require a lot of reading
 - require essay writing skills

In CS, we **do**:

- require the ability to translate a given textual problem into programming code
- require you to be able to read other people's code
- value solutions that are almost right over no solution
- accept solutions we did not think about if they work
- prioritize math (logic) and science (experiment) over opinion or authority

How to prepare for a CS exam

- Explain the content of the computational concepts toolbox to somebody else
 - Describe the concept
 - What is an example of using it?
 - When does it not work? Corner cases?
 - Why does it exist?

- Practice programming:
 - Play around with the examples from lecture, lab, homework
 - Think about your own similar examples

- In the exam:
 - Make sure you understand the question: What is the given input? What is the required output?
 - Think of easy cases first (e.g., n=1?).
 - What is the iteration/recursion doing (e.g., i=i+1)?
 - What are corner cases that need explicit handling (e.g., division by zero, negative numbers, empty list)?

Computational Concepts Toolbox

- Data type: values, literals, operations, e.g., int, float, string
- Expressions, Call expression
- Variables
- Assignment Statement
- Sequences: tuple, list
- Indexing
- Data structures
- Tuple assignment
- Call Expressions
- Function Definition Statement
- Conditional Statement
- Iteration: data-driven (list comprehension) control-driven (for statement)
- while statement
- Higher Order Functions
 - Functions as Values
 - Functions with functions as argument
 - Assignment of function values
- Recursion
- Environment Diagrams

Recursion Key concepts – by example

1. Test for simple "base" case
2. Solution in simple "base" case
3. Assume recursive solution to simpler problem
4. Transform solution to simpler problem into full solution

```python
def sum_of_squares(n):
    if n < 1:
        return 0
    else:
        return sum_of_squares(n-1) + n**2
```

In words

- The sum of no numbers is zero
- The sum of 1^2 through n^2 is the sum of 1^2 through (n-1)^2 plus n^2

```python
def sum_of_squares(n):
    if n < 1:
        return 0
    else:
        return sum_of_squares(n-1) + n**2
```
How does it work?

• Each recursive call gets its own local variables
 – Just like any other function call
• Computes its result (possibly using additional calls)
 – Just like any other function call
• Returns its result and returns control to its caller
 – Just like any other function call
• The function that is called happens to be itself
 – Called on a simpler problem
 – Eventually bottoms out on the simple base case
• Reason about correctness “by induction”
 – Solve a base case
 – Assuming a solution to a smaller problem, extend it

Local variables

def sum_of_squares(n):
 n_squared = n**2
 if n < 1:
 return 0
 else:
 return n_squared + sum_of_squares(n-1)

• Each call has its own “frame” of local variables
• What about globals?
• Let’s see the environment diagrams

https://goo.gl/CiFaUJ
How much ???

- Time is required to compute \(\text{sum} _\text{of} _\text{squares}(n) \)?
 - Recursively?
 - Iteratively?
- Space is required to compute \(\text{sum} _\text{of} _\text{squares}(n) \)?
 - Recursively?
 - Iteratively?
- Count the frames...
- Recursive is linear, iterative is constant!

Tail Recursion

- All the work happens on the way down the recursion
- On the way back up, just return

```python
def \text{sum} \_\text{of} \_\text{squares}(i, n, \text{accum}):  
    \text{"""Sum the squares from i to n in incr. order""""}  
    \text{if } i > n:  
        \text{Base Case}  
    \text{else:}  
        \text{Tail Recursive Case}  
    \text{>>= } \text{sum} \_\text{of} \_\text{squares}(i+1, n, \text{accum} + i**2)  
>>> \text{sum} \_\text{of} \_\text{squares}(1,3,0)  
14
```
Tree Recursion

- Break the problem into multiple smaller sub-problems, and Solve them recursively

```python
def split(x, s):
    return [i for i in s if i <= x], [i for i in s if i > x]
def qsort(s):
    """Sort a sequence - split it by the first element, sort both parts and put them back together.""
    if not s:
        return []
    else:
        pivot = first(s)
        lessor, more = split(pivot, rest(s))
        return qsort(lessor) + [pivot] + qsort(more)
```

```python
def split(x, s):
    return [i for i in s if i <= x], [i for i in s if i > x]
def qsort(s):
    """Sort a sequence - split it by the first element, sort both parts and put them back together.""
    if not s:
        return []
    else:
        pivot = first(s)
        lessor, more = split(pivot, rest(s))
        return qsort(lessor) + [pivot] + qsort(more)
```

```python
>>> qsort([3, 3, 1, 4, 5, 4, 3, 2, 1, 17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]
```

QuickSort Example

```
[2, 3, 1, 2, 1]
[3, 2, 1, 1]
[1, 1, 2, 1]

[4, 5, 4, 17]
[4, 1, 17]
[4, 1]
```

Tree Recursion with HOF

```python
def qsort(s):
    """Sort a sequence - split it by the first element, sort both parts and put them back together.""
    if not s:
        return []
    else:
        pivot = first(s)
        lessor, more = split(s)(leq_maker(pivot)), rest(s)
        return qsort(lessor) + [pivot] + qsort(more)
```

```python
def qsort(s):
    """Sort a sequence - split it by the first element, sort both parts and put them back together.""
    if not s:
        return []
    else:
        pivot = first(s)
        lessor, more = split(s)(leq_maker(pivot)), rest(s)
        return qsort(lessor) + [pivot] + qsort(more)
```

```python
>>> qsort([3, 3, 1, 4, 5, 4, 3, 2, 1, 17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]
```

Computational Concepts Toolbox

- Data type: values, literals, operations,
 - e.g., int, float, string
- Expressions, Call expression
- Variables
- Assignment Statement
- Sequences: tuple, list
 - indexing
- Data structures
- Tuple assignment
- Call Expressions
- Function Definition Statement
- Conditional Statement
- Iteration:
 - data-driven (list comprehension)
 - control-driven (for statement)
 - while statement
- Higher Order Functions
 - Functions as Values
 - Functions with functions as argument
 - Assignment of function values
- Recursion
- Environment Diagrams
- Quantum physics: Allow less than \(\log_2 n\) guesses.

Answers for the Wandering Mind

The computer choses a random element \(x\) of the list generated by range(0,n). What is the smallest amount of iteration/recursion steps the best algorithm needs to guess \(x\)?

\(\log_2 n\)

How would the algorithm look like?

Guess the binary digits of \(x\) starting with the highest significant digit. This is, ask questions of the form
"smaller than \(2^n\)?" (yes => 0…),
"smaller than \(2^{n-1}\)?" (no => 0 1…),
"smaller than \(2^{n-2}+2^{n-3}\)?"
This method is also called: binary search
Quantum physics: Allow less than \(\log_2 n\) guesses.