Intro to Higher Order Functions

David E. Culler
CS8 – Computational Structures in Data Science
http://inst.eecs.berkeley.edu/~cs88

Lecture 4
Sept 17, 2018
Berkeley Distinguished Lectures in Data Science - Fall 2018 Series

August 20, 2018

The Berkeley Distinguished Lectures in Data Science, co-hosted by the Berkeley Institute for Data Science (BIDS) and the Berkeley Division of Data Sciences, next month for the Fall 2018 series. Upcoming lectures feature Berkeley faculty who are leading visionary research that illustrates the character of the ongoing data revolution. Each lecture series is offered to engage our diverse campus community and enrich connections among colleagues. All campus community members are welcome and encouraged to attend.

California Water Data Hackathon

Data Science in the News

Division of Data Sciences
Enabling research, innovation, and learning across UC Berkeley

Data Collaboratives
Cultivating student-powered solutions to a range of pressing challenges. Find out more here!
Administrative issues

• Tutoring
 – To help you prepare for exams, we will be hosting small group tutoring will start today -- to sign up, go tiny.cc/cs88tutoring ; we will also be having guerrilla sections starting this Friday from 7-9 pm, it will be in Soda 310"

• Midterm Wed 10/3 evening (6-8 working on room)
• Project 1 Follows midterm
Computational Concepts Toolbox

• Data type: values, literals, operations,
 – e.g., int, float, string
• Expressions, Call expression
• Variables
• Assignment Statement
• Sequences: tuple, list
• Data structures
• Tuple assignment
• Call Expressions
• Function Definition Statement
• Conditional Statement

Iteration:
 – data-driven (list comprehension)
 – control-driven (for statement)
 – while statement
Computational Concepts today

- Higher Order Functions
- Functions as Values
- Functions with functions as argument
- Assignment of function values
- Higher order function patterns
 - Map, Filter, Reduce
- Function factories – create and return functions

Big Idea: Software Design Patterns
Today’s Notebook

Iteration Review

• When should we use a for loop, rather than list comprehension?
Higher Order Functions

• Functions that operate on functions
• A function

```python
def odd(x):
    return (x%2==1)

>>> odd(3)
True
```

• A function that takes a function arg

```python
def filter(fun, s):
    return [x for x in s if fun(x)]

>>> filter(odd, [0,1,2,3,4,5,6,7])
[1, 3, 5, 7]
```

Why is this not ‘odd’?
Higher Order Functions (cont)

• A function that returns (makes) a function

```python
def leq_maker(c):
    def leq(val):
        return val <= c
    return leq

>>> leq_maker(3)
<function leq_maker.<locals>.leq at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> filter(leq_maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]
```
Three super important HOFS

map(function_to_apply, list_of_inputs)
Applies function to each element of the list

filter(condition, list_of_inputs)
Returns a list of elements for which the condition is true

reduce(function, list_of_inputs)
Reduces the list to a result, given the function
One more example

• What does this function do?

```python
def split_fun(p, s):
    """ Returns <you fill this in>."""
    return [i for i in s if p(i)], [i for i in s if not p(i)]

>>> split_fun(leq_maker(3), [0,1,2,3,4,5,6])
([0, 1, 2, 3], [4, 5, 6])
```
def linemaker(m, b):
 def linefun(x):
 # Create a function that embeds the parameters of the line
 return m*x + b
 # Return that dynamically created function
 return linefun

def make_decoder(code_map):
 """Make a decoder function specified by a map""
 def decode(code):
 for (code_num, desc) in code_map:
 if code == code_num:
 return desc
 return "unknown"
 return decode
Computational Concepts today

- Higher Order Functions
- Functions as Values
- Functions with functions as argument
- Assignment of function values
- Higher order function patterns
 - Map, Filter, Reduce
- Function factories – create and return functions

Big Idea: Software Design Patterns
Recap: Data or Code?