Welcome to CS88

David E. Culler
CS8 – Computational Structures in Data Science
http://inst.eecs.berkeley.edu/~cs88

Lecture 1
August 27, 2018

Welcome

• We are all here to learn:
 Knowledge(end) – Knowledge(start)

CS88 Team

• David Culler (culler@berkeley.edu)
 – Hearst Field Annex / 465 Soda Hall (amplab)
 – http://www.cs.berkeley.edu/~culler
 – Office hours: Mon 3-4 + TBD

• Build things
 – Cray Time Sharing System
 – OS386, OS286
 – Active Messages
 – Massive High Performance Clusters
 – TinyOS / Berkeley Motes, …
 – LoCal, BOSS, …

CS88 Team - uGSIs

Ting Ding
tingding96@berkeley.edu

Jessica Gao
gaojessicaping@berkeley.edu

Alex Kassell
alexkassell@berkeley.edu

Amir Shahatit
ashahatit@berkeley.edu

Andrew Tan
andrewtan@berkeley.edu

John Yang
john.yang20@berkeley.edu

CS88 Team - me

Goals today

• Introduce you to
 – The field
 – The course
 – The Team

• Answer your questions

• Big Ideas
 – Algorithm
 – Data type
 – Representation
Increasingly US jobs require data science and analytics skills. Can we meet the demand? The current shortage of skills in the national job pool demonstrates that business-as-usual strategies won’t satisfy the growing need. If we are to unlock the promise and potential of data and all the technologies that depend on it, employers and educators will have to transform.

By 2021, 69% of employers expect candidates with DSA skills to get preference for jobs in their organizations. Only 23% of college and university leaders say their graduates will have those skills.
A Connected World of Data

- The world’s knowledge at our finger tips
- Digitalization of life, industry and society
- Intimately connected to billions of us, globally
- Explosion of observational instruments
 - Genomics, Microscopy, Astronomical, …
- Vast Computational power to do analytics
- Synthetic design exploration thru simulation
- Machine reading of everything
- Statistical machine learning algorithms to “discover” structure

What if I could … ?

- See the world’s digital footprints?
- Read everything that’s ever been written?
- Take it all in and dive down anywhere as far as the science can take me?
- Learn the physical/chemical/biological/sociological/neurological… models from the data?
- Explore billions of designs and pick the one I want?
- …?

Data 8 – Foundations of Data Science

- Computational Thinking + Inferential Thinking in the context of working with real world data
- Introduce you to several computational concepts in a simple data-centered setting
 - Authoring computational documents
 - Tables
 - Within Python3 and “SciPy”

CS88 – Computational Structures in Data Science

- Deeper understanding of the computing concepts introduced in c8
 - Hands-on experience ➔ Foundational Concept
 - How would you create what you use in c8?
- Extend your understanding of the structure of computation
 - What is involved in interpreting the code you write?
 - Deeper CS Concepts: Recursion, Objects, Classes, Higher-order Functions, Declarative programming, …
 - Managing complexity in creating larger software systems through composition
- Create complete (and fun) applications
- In a data-centric approach

How does CS88 relate to CS61A?

Opportunities for students

- c8
- c8 CS88
- c8 CS88 CS61b
- CS minor
- CS major
- c8 cs61a
- cs61a
A New Data Science Major soon

Course Structure

- Monday Lecture + Friday Lab/Discussion
- Lecture introduces concepts (quickly)
- Lab provides concrete detail hands-on
- Homework cements your understanding
 - Out Friday, Due Thursday
- Projects (3) put your understanding to work in building complete applications
- Readings: composingprograms.com
 - Same as cs61a

Course Culture

- Learning
- Community
- Respect
- Collaboration
- Peer Instruction

Collaboration

Asking questions is highly encouraged
- Discuss all questions with each other (except exams)
- Submit lab assignments individually (graded on completeness)
- If you choose not to come to lab, you must work alone
- Submit homework individually and list collaborators
- Submit projects in pairs; find a partner in your lab

The Limits of collaboration

Don’t share solutions with each other (except project partners)
- Copying solutions will result in failing the course

Piazza for {ask,answer}ing questions

Where will we work?

- datahub.Berkeley.edu
- The computer you carry around
- inst.eecs.Berkeley.edu

Lab Sections Assignments

- We will collect availability on Wednesday
- Attend any lab section on Friday.
- Assignments effective following Friday.
Algorithm

- An algorithm (pronounced AL-go-rith-um) is a procedure or formula for solving a problem.
- In mathematics and computer science, an algorithm is a self-contained step-by-step set of operations to be performed.
- An algorithm is an effective method that can be expressed within a finite amount of space and time and in a well-defined formal language for calculating a function.

Algorithms early in life

- Carry (MSD)
- Operands
- Least significant digit of result

Algorithms early in life (in binary)

- Carry (MSD)
- Operands
- LSB result

A Simple Algorithm in Class

- Count the number of students

More interesting one, ...

- Betcha people in here share a birthday?

Abstraction

- Detail removal
 - “The act or process of leaving out of consideration one or more properties of a complex object so as to attend to others.”
- Generalization
 - “The process of formulating general concepts by abstracting common properties of instances.”

Henri Matisse "Naked Blue IV"
Where are you from?

Possible Answers:
- China
- California
- The Bay Area
- San Mateo
- 1947 Center Street, Berkeley, CA
- 37.8693° N, 122.2696° W

All correct but different levels of abstraction!

Detail Removal (in Data Science)

- You’ll want to look at only the interesting data, leave out the details, zoom in/out...
- Abstraction is the idea that you focus on the essence, the cleanest way to map the messy real world to one you can build
- Experts are often brought in to know what to remove and what to keep!

The Power of Abstraction, Everywhere!

- Examples:
 - Functions (e.g., sin x)
 - Hiring contractors
 - Application Programming Interfaces (APIs)
 - Technology (e.g., cars)

- Amazing things are built when these layer
 - And the abstraction layers are getting deeper by the day!

The London Underground 1928 Map & the 1933 map by Harry Beck.

Abstraction in CS: Data Type

- What’s this?

 Real (or ideal) world

 42

 Computer representation

- Set of elements
 - with some internal representation
 - E.g. Integers, Floats, Booleans, Strings, ...

- Set of operations on elements of the type
 - e.g. +, -, /, %, //, **
 - ==, !=, <, <=, >, >=

- Properties
 - Commutative, Associative, …, Closure (???)

- Expressions are valid well-defined sets of operations on elements that produce a value of a type
Questions

• What’s the difference between ‘==’ and ‘=’?

Lab and HW this week

• Lab will get you to where you have a program development environment
 – Even on your computer

• HW will give practice and explain subtleties of types, operators, and expressions
 – In a program development environment

Question of the week

• How many “things” can you represent with N bits