Welcome to CS88

David E. Culler
CS8 – Computational Structures in Data Science
http://inst.eecs.berkeley.edu/~cs88

Lecture 1
August 27, 2018
Welcome

• We are all here to learn:
 Knowledge\text{(end)} – Knowledge\text{(start)}
S88 Team - uGSIs

Ting Ding
tingding96@berkeley.edu

Jessica Gao
gaojessicaping@berkeley.edu

Alex Kassil
alekkassil@berkeley.edu

Amir Shahatit
ashahatit@berkeley.edu

Andrew Tan
andrewtan@berkeley.edu

John Yang
john.yang20@berkeley.edu
CS88 Team - me

• David Culler (culler@berkeley.edu)
 – Hearst Field Annex / 465 Soda Hall (amplab)
 – http://www.cs.berkeley.edu/~culler
 – Office hours: Mon 3-4 + TBD

• Build things
 – Cray Time Sharing System
 – OS386, OS286
 – Active Messages
 – Massive High Performance Clusters
 – TinyOS / Berkeley Motes, …
 – LoCal, BOSS, …
Goals today

• Introduce you to
 – The field
 – The course
 – The Team

• Answer your questions

• Big Ideas
 – Algorithm
 – Data type
 – Representation
Data Science

Nearly every field of discovery is transitioning from “data poor” to “data rich”

Data Science growing organically everywhere

Astronomy: LSST
Physics: LHC
Oceanography: OOI

Sociology: The Web
Biology: Sequencing
Economics: POS terminals
Neuroscience: EEG, fMRI

Earthquake
Strong
Shaking
in 11
seconds

Richard Allen
Earth&Plan.
Science
Geospatial Lab

Emmanuel Saez, Economics

Bin Yu, Statistics
Jack Gallant, Neuroscience

Adam Arkin, Bioengineering
Fernando Perez, Brain Imaging Center

Charles Marshall, Rosie Gillespie
Integrative Biology
Digitized Museum

Reconstructing the movies in your mind

Bin Yu, Statistics
Jack Gallant, Neuroscience

Ernesto Ugalde, Electrical Engineering

The data deluge
AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

The New York Times
Incomes Flat in Recovery but Not for the 1%
Feb 25, 2013
Emmanuel Saez, Economics

The Economist

Reconstruc=ng!the!movies!
in!your!mind!

Bin!Yu,!Statistics!
Jack!Gallant,!Neuroscience!
Increasingly US jobs require data science and analytics skills. Can we meet the demand? The current shortage of skills in the national job pool demonstrates that business-as-usual strategies won’t satisfy the growing need. If we are to unlock the promise and potential of data and all the technologies that depend on it, employers and educators will have to transform.

By 2021, **69% of employers expect** candidates with DSA skills to get preference for jobs in their organizations. Only **23% of college** and university leaders say their graduates will have those skills.
Greatest Artifact of Human Civilization …
The Global Village

% of world's population

ARPANet
RFC 675 TCP/IP
1969
1974

Internet

WWW

HTTP 0.9

2.0 B 1/26/11

4.2 B

% of world's population
WORLD INTERNET USAGE AND POPULATION STATISTICS
DEC 31, 2017 - Update

<table>
<thead>
<tr>
<th>World Regions</th>
<th>Population (2018 Est.)</th>
<th>Population % of World</th>
<th>Internet Users 31 Dec 2017</th>
<th>Penetration Rate (% Pop.)</th>
<th>Growth 2000-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>1,287,914,329</td>
<td>16.9 %</td>
<td>453,329,534</td>
<td>35.2 %</td>
<td>9,941 %</td>
</tr>
<tr>
<td>Asia</td>
<td>4,207,588,157</td>
<td>55.1 %</td>
<td>2,023,630,194</td>
<td>48.1 %</td>
<td>1,670 %</td>
</tr>
<tr>
<td>Europe</td>
<td>827,650,849</td>
<td>10.8 %</td>
<td>704,833,752</td>
<td>85.2 %</td>
<td>570 %</td>
</tr>
<tr>
<td>Latin America / Caribbean</td>
<td>652,047,996</td>
<td>8.5 %</td>
<td>437,001,277</td>
<td>67.0 %</td>
<td>2,318 %</td>
</tr>
<tr>
<td>Middle East</td>
<td>254,438,981</td>
<td>3.3 %</td>
<td>164,037,259</td>
<td>64.5 %</td>
<td>4,893 %</td>
</tr>
<tr>
<td>North America</td>
<td>363,844,662</td>
<td>4.8 %</td>
<td>345,660,847</td>
<td>95.0 %</td>
<td>219 %</td>
</tr>
<tr>
<td>Oceania / Australia</td>
<td>41,273,454</td>
<td>0.6 %</td>
<td>28,439,277</td>
<td>68.9 %</td>
<td>273 %</td>
</tr>
<tr>
<td>WORLD TOTAL</td>
<td>7,634,758,428</td>
<td>100.0 %</td>
<td>4,156,932,140</td>
<td>54.4 %</td>
<td>1,052 %</td>
</tr>
</tbody>
</table>
Era of Transformation

Age of Enlightenment

Industrial Revolution

Connected World
A Connected World of Data

• The world’s knowledge at our finger tips
• *Digitization* of life, industry and society
• Intimately connected to billions of us, globally
• Explosion of observational instruments
 – Genomics, Microscopy, Astronomical, …
• Vast Computational power to do analytics
• Synthetic design exploration thru simulation
• Machine reading of everything
• Statistical machine learning algorithms to “discover” structure
What if I could … ?

• See the world’s digital footprints?
• Read everything that’s ever been written?
• Take it all in and dive down anywhere as far as the science can take me?
• Learn the physical/chemical/biological/sociological/neurological… models from the data?
• Explore billions of designs and pick the one I want?
• … ?
Data 8 – Foundations of Data Science

• Computational Thinking + Inferential Thinking in the context of working with real world data

• Introduce you to several computational concepts in a simple data-centered setting
 – Authoring computational documents
 – Tables
 – Within Python3 and “SciPy”
CS88 – Computational Structures in Data Science

• Deeper understanding of the computing concepts introduced in c8
 – Hands-on experience => Foundational Concept
 – How would you create what you use in c8?

• Extend your understanding of the structure of computation
 – What is involved in interpreting the code you write?
 – Deeper CS Concepts: Recursion, Objects, Classes, Higher-order Functions, Declarative programming, ...
 – Managing complexity in creating larger software systems through composition

• Create complete (and fun) applications
• In a data-centric approach
How does CS88 relate to CS61A?

CS61A

- Intro Programming & Tools
- CS Concepts and Techniques

CS88

- Working w/ Data
- CS Concepts and Techniques & Tools
- Statistics Concepts in a Computational Approach
- Intro Programming

CS/INFO/STAT c8

- Thinking w/ Data
Opportunities for students

- c8
- c8 CS88
- c8 CS88 CS61b

CS minor

CS major

- c8 cs61a
- cs61a
A New Data Science Major soon

Individualized
Upper Division
30 units

Foundational
Lower Division

Computational & Inferential Depth
Modeling, Learning & Decision Making
Probability
Domain Emphasis
Human Contexts & Ethics
Data 100: Principles & Techniques of Data Science
Data 8: Foundations of Data Science
Mathematics
Computing
Domain Emphasis
College Breadth & Electives
Electives
Course Structure

• Monday Lecture + Friday Lab/Discussion
• Lecture introduces concepts (quickly)
• Lab provides concrete detail hands-on
• Homework cements your understanding
 – Out Friday, Due Thursday
• Projects (3) put your understanding to work in building complete applications
• Readings: composingprograms.com
 – Same as cs61a
Course Culture

- Learning
- Community
- Respect
- Collaboration
- Peer Instruction

Collaboration

Asking questions is highly encouraged
- Discuss all questions with each other (except exams)
- Submit lab assignments individually (graded on completeness)
 - If you come to lab, you can collaborate liberally
 - If you choose not to come to lab, you must work alone
- Submit homework individually and list collaborators
- Submit projects in pairs; find a partner in your lab

The Limits of collaboration
- Don't share solutions with each other (except project partners)
- Copying solutions will result in failing the course
Piazza for {ask,answer}ing questions
Where will we work?

• datahub.Berkeley.edu
• The computer you carry around
• inst.eecs.Berkeley.edu
Lab Sections Assignments

• We will collect availability on Wednesday
• Attend any lab section on Friday.
• Assignments effective following Friday.
Algorithm

• An algorithm (pronounced AL-go-rith-um) is a procedure or formula for solving a problem.

• In mathematics and computer science, an algorithm is a self-contained step-by-step set of operations to be performed.

• An algorithm is an effective method that can be expressed within a finite amount of space and time and in a well-defined formal language for calculating a function.
Algorithms early in life

operator +

\[
\begin{array}{c}
\hline
7 \\
8 \\
\hline
\end{array}
\]
\hspace{1cm}
1

Carry (MSD)

Least significant digit of result

operands
Algorithms early in life (in binary)

operator +

1 1 0 0 Carry (MSD)
1 1 1 1 0 operands
1 1 0 0

1 1 0 1 0 LSB result

14 + 12 = 26
A Simple Algorithm in Class

• Count the number of students
More interesting one, …

• Betcha people in here share a birthday?

Presidents?
Abstraction

• Detail removal
 – “The act or process of leaving out of consideration one or more properties of a complex object so as to attend to others.”

• Generalization
 – “The process of formulating general concepts by abstracting common properties of instances”

Henri Matisse “Naked Blue IV”
WHERE ARE YOU FROM?
Where are you from?

Possible Answers:

• China
• California
• The Bay Area
• San Mateo
• 1947 Center Street, Berkeley, CA
• 37.8693° N, 122.2696° W

All correct but different levels of abstraction!
You’ll want to look at only the interesting data, leave out the details, zoom in/out...

Abstraction is the idea that you focus on the essence, the cleanest way to map the messy real world to one you can build

Experts are often brought in to know what to remove and what to keep!

The London Underground 1928 Map & the 1933 map by Harry Beck.
The Power of Abstraction, Everywhere!

- **Examples:**
 - Functions (e.g., \(\sin x \))
 - Hiring contractors
 - Application Programming Interfaces (APIs)
 - Technology (e.g., cars)

- Amazing things are built when these layer
 - And the abstraction layers are getting deeper by the day!

We only need to worry about the interface, or specification, or contract, **NOT** how (or by whom) it’s built.

Above the abstraction line

Abstraction Barrier (Interface)
(the interface, or specification, or contract)

Below the abstraction line

This is where / how / when / by whom it is actually built, which is done according to the interface, specification, or contract.
Abstraction in CS: Data Type

- What’s this?

Real (or ideal) world

42

Computer representation
Data Types and Operations

• Set of elements
 – with some internal representation
 – E.g. Integers, Floats, Booleans, Strings, …

• Set of operations on elements of the type
 – e.g. +, *, -, /, %, //, **
 – ==, <, >, <=, >=

• Properties
 – Commutative, Associative, … , Closure (???)

• Expressions are valid well-defined sets of operations on elements that produce a value of a type
Questions

• What’s the difference between ‘==' and ‘=’?
Lab and HW this week

• Lab will get you to where you have a *program development environment*
 – Even on your computer

• HW will give practice and explain subtleties of types, operators, and expressions
 – In a program development environment
Question of the week

• How many “things” can you represent with N bits