Lecture #1:
Welcome to CS88!

January 28, 2019
CS88 Team

Teaching Assistants

Alex Kassil
Email: alexkassil@berkeley.edu

Amir Shahatit
Email: ashahatit@berkeley.edu

Andrew Tan
Email: andrewtan@berkeley.edu

Brian Mi
Email: bmi@berkeley.edu

Jessica Gao
Email: gaojessicaping@berkeley.edu

John Yang
Email: john.yang20@berkeley.edu

Julia Yu
Email: juliyu@berkeley.edu

Lyric Yu
Email: lyricyu@berkeley.edu

Sophia Qin
Email: sophia.qin@berkeley.edu

Srinath Goli
Email: srig@berkeley.edu
CS88 Team

Tutors

Alec Kan
Email: alec.kan@berkeley.edu

Academic Interns

Akshatha Muralidhar
Andrew Cullen
Kevin Gu
Minos Park
CS88 Team - me

• Dr. Gerald Friedland (fractor@berkeley.edu)
 – 424 Saturdai Daj Hall (CITRIS)
 – http://www.gerald-friedland.org
 – Office hours: Mo 1:30-2:30 @ 424 SDH
 – Before/after class

• Adjunct Assistant Professor, EECS UC Berkeley
• Principal Data Scientist, Lawrence Livermore National Laboratories
Projects you might want to check out:

- http://mmcommons.org
 - Work with 100M images, 1M videos in your own Amazon instance.

- http://www.teachingprivacy.org
 - Creating teaching materials informing about data over sharing.
Goals today

• Introduce you to
 – the field
 – the course
 – the team

• Answer your questions

• Big Ideas:
 – Abstraction
 – Data Type
Data Science

Nearly every field of discovery is transitioning from “data poor” to “data rich”

Astronomy: LSST

Physics: LHC

Oceanography: OOI

Sociology: The Web

Biology: Sequencing

Economics: POS terminals

Neuroscience: EEG, fMRI

6

Earthquake

Strong

Shaking

in 11 seconds

Richard Allen
Earth&Plan.
Science

GeoSpatial Lab

Bin Yu, Statistics

Jack Gallant, Neuroscience

Fernando Perez
Brain Imaging Center

iPython tools and community

AMP Lab
Ion Stoica, CS
Michael Franklin, CS

Data Science growing organically everywhere

DATE

AMP!Lab
Ion!Stoica,!CS
Michael!Franklin,!CS

Adam!Arkin,
Bioengineering

Emanuel!Saez,
Economics

Emmanuel!Saez,
Economics

Feb!15,!2013

The data deluge

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

Emmanuel Saez, Economics

Biology:*Sequencing*

Economics:*POS*

terminals

Neuroscience:*EEG,*fMRI

Oceanography:*OOI*

Astronomy:*LSST*

Physics:*LHC*

Earth&!Plan.!Science!

Geospa=al!Lab

Fernando!Perez,
Brain Imaging Center

iPython tools and community

AMP Lab
Ion Stoica, CS
Michael Franklin, CS

Adam Arkin,
Bioengineering

Emmanuel!Saez,
Economics

Nearly every field of discovery is transitioning from “data poor” to “data rich”

01/28/2015

UCB CS88 Sp19 L1
Greatest Artifact of Human Civilization ...
A Connected World

Internet Users in the world

3,293,151,639

Google searches today

2,652,887,737

Videos viewed today on YouTube

5,835,884,253

ARPANet

RFC 675: TCP/IP

1969 1974

1974 2010
Data 8 – Foundations of Data Science

- Computational Thinking + Inferential Thinking in the context of working with real world data
- Introduce you to several computational concepts in a simple data-centered setting
 - Authoring computational documents
 - Tables
 - Within Python3 and “SciPy”
• Deeper understanding of the computing concepts introduced in c8
 – Hands-on experience => Foundational Concept
 – How would you create what you use in c8?

• Extend your understanding of the structure of computation
 – What is involved in interpreting the code you write?
 – Deeper CS Concepts: Recursion, Objects, Classes, Higher-order Functions, Declarative programming, …
 – Managing complexity in creating larger software systems through composition

• Create complete (and fun) applications
• In a data-centric approach
Pathways

- cs8
- cs8 cs88
- cs8 cs88 cs47a cs61b

*** CS major

- cs8 cs61a
- cs61a
How does CS88 relate to CS61A?

CS61A

- Intro Programming & Tools
- CS Concepts and Techniques

CS/INFO/STAT c8

- Intro Programming
- Statistics Concepts in a Computational Approach

CS88

- Working w/ Data
- CS Concepts and Techniques
- & Tools

Units

- Interpretation
- Thinking w/ Data
Course Structure

- 1 Lecture + 1 Lab/Discussion on Wednesday (!!!)
- Lecture introduces concepts (quickly!), answers why questions.
- Lab provides concrete detail hands-on
- Homework (10) cements your understanding
 - Out Monday, Due Sunday
- Projects (3) put your understanding to work in building complete applications
 - Maps
 - Hangman
 - Open Projects!

- Readings: http://composingprograms.com
 - Same as cs61a
Course Culture

• Learning
• Community
• Respect
• Collaboration
• Peer Instruction
Piazza for {ask, answer}ing questions
Where will we work?

• Datahub.berkeley.edu
• Your laptop
• Inst.eecs.Berkeley.edu
Pro-student Grading Policies

• EPA
 – Rewards good behavior
 – **Effort**
 » E.g., Office hours, doing every single lab, hw, reading Piazza pages
 – **Participation**
 » E.g., Raising hand in lec or discussion, asking questions on Piazza
 – **Altruism**
 » E.g., helping other students in lab, answering questions on Piazza

• You have 2 “Slip Days”
 – You use them to extend due date, 1 slip day for 1 day extension
 – You can use them one at a time or all at once or in any combination
 – They follow you around when you pair up (you are counted individually)
 » E.g., A has 2, B has 0. Project is late by 1 day. A uses 1, B is 1 day late
Abstraction

• Detail removal
 “The act of leaving out of consideration one or more properties of a complex object so as to attend to others.”

• Generalization
 “The process of formulating general concepts by abstracting common properties of instances”

• Technical terms: Compression, Quantization, Clustering, Unsupervised Learning

Henri Matisse “Naked Blue IV”
WHERE ARE YOU FROM?
Where are you from?

Possible Answers:

• China
• California
• The Bay Area
• San Mateo
• 1947 Center Street, Berkeley, CA
• 37.8693° N, 122.2696° W

All correct but different levels of abstraction!
Abstraction gone wrong!

I Can Stalk U
Raising awareness about inadvertent information sharing

What are people really saying in their tweets?

denisluque: I am currently nearby http://maps.google.com/
?q=-23.6193333333,-46.5506666667
1 minute ago · Map Location · View Tweet · View Picture · Reply to denisluque

nikosofficiel: I am currently nearby http://maps.google.com/
?q=48.8699333333,2.3282333333
5 minutes ago · Map Location · View Tweet · View Picture · Reply to nicosofficiel

dilmanarede: I am currently nearby http://maps.google.com/
?q=-15.7878333333,-47.8291666667
7 minutes ago · Map Location · View Tweet · View Picture · Reply to dilmanarede

downtownvan: I am currently nearby http://maps.google.com/
?q=49.2833333333,-123.1198333333
10 minutes ago · Map Location · View Tweet · View Picture · Reply to downtownvan

MommaGooseBC: I am currently nearby 15745 Weaver Lake Rd
Maple Grove MN

Links
- Mayhemic Labs
- PaulDotCom
- SANS ISC
- Electronic Frontier Foundation
- Center for Democracy & Technology

How did you find me?

Did you know that a lot of smart phones encode the location of where pictures are taken? Anyone who has a copy can access this information.
Detail Removal (in Data Science)

- You’ll want to look at only the interesting data, leave out the details, zoom in/out...

- Abstraction is the idea that you focus on the essence, the cleanest way to map the messy real world to one you can build

- Experts are often brought in to know what to remove and what to keep!

The London Underground 1928 Map & the 1933 map by Harry Beck.
The Power of Abstraction, Everywhere!

• Examples:
 – Functions (e.g., sin x)
 – Hiring contractors
 – Application Programming Interfaces (APIs)
 – Technology (e.g., cars)

• Amazing things are built when these layer
 – And the abstraction layers are getting deeper by the day!

We only need to worry about the interface, or specification, or contract
NOT how (or by whom) it’s built

Above the abstraction line

Abstraction Barrier (Interface)
(the interface, or specification, or contract)

Below the abstraction line

This is where / how / when / by whom it is actually built, which is done according to the interface, specification, or contract.
Abstraction: Pitfalls

- Abstraction is not universal without loss of information (mathematically provable). This means, in the end, the complexity can only be “moved around”

- Abstraction makes us forget how things actually work and can therefore hide bias. Example: AI and hiring decisions.

- Abstraction makes things special and that creates dependencies. Dependencies grow longer and longer over time and can become unmanageable.
Abstraction in CS: Data Type

- What’s this?

Real (or ideal) world

42

Computer representation
Data Types and Operations

• Set of elements
 – with some internal representation
 – E.g. Integers, Floats, Booleans, Strings, ...

• Set of operations on elements of the type
 – e.g. +, *, -, /, %, //, **
 – ==, <, >, <=, >=

• Properties
 – Commutative, Associative, … , Closure (???)

• Expressions are valid well-defined sets of operations on elements that produce a value of a type
Lab and HW this week

• Lab will get you to where you have a program development environment
 – Even on your computer

• HW will give practice and explain subtleties of types, operators, and expressions
 – In a program development environment

• What’s the difference between ‘==‘ and ‘=‘ ?
A binary digit (bit) is a symbol from \{0,1\}.

• How many strings can you represent with \(N\) bits?

• Could you build a program that compresses all strings of \(N\) bits to strings of \(M\) bits (with \(M<N\)) such that you can go back to all original strings of length \(N\)? How or Why?