Lecture #1:
Welcome to CS88!

August 26, 2016

http://inst.eecs.berkeley.edu/~cs88
Goals today

• Introduce you to
 – the field
 – the course
 – the team

• Answer your questions

• Big Ideas:
 – Abstraction
 – Data Type
Data Science

Nearly every field of discovery is transitioning from “data poor” to “data rich”

Data Science growing organically everywhere

Astronomy: LSST
Physics: LHC
Oceanography: OOI

Sociology: The Web
Biology: Sequencing
Economics: POS terminals

Astronomy: LSST
Physics: LHC
Oceanography: OOI

Berkeley

Data Science growing organically everywhere

Astronomy: LSST
Physics: LHC
Oceanography: OOI

Sociology: The Web
Biology: Sequencing
Economics: POS terminals

Reconstructing the movies in your mind

Bin Yu, Statistics
Jack Gallant, Neuroscience

Richard Allen
Earth& Plan. Science
Geospatial Lab

Adam Arkin, Bioengineering
Fernando Perez, Brain Imaging Center

Charles Marshall
Rosie Gillespie
Integrative Biology
Digitized Museum

Emmanuel Saez, Economics
Data Science

In the United States, it is reported that by 2018 there will be more than 490,000 data science positions available, but only 200,000 qualified people to fill the roles. The average size of a graduate class of data science students is 23 students. With approximately only 110 universities offering data science studies, the growing market will continue to pressure the supply in the US.
Greatest Artifact of Human Civilization ...
A Connected World

3,293,151,639
Internet Users in the world

2,652,887,737
Google searches today

5,835,884,253
Videos viewed today on YouTube

ARPANet
1969 1974

RFC 675: TCP/IP

Internet

2.0 B 1/26/11

3.0 B 11/15

8/26/16
Data 8 – Foundations of Data Science

• Computational Thinking + Inferential Thinking in the context of working with real world data

• Introduce you to several computational concepts in a simple data-centered setting
 – Authoring computational documents
 – Tables
 – Within Python3 and “SciPy”

8/26/16
UCB CS88 Sp16 L1
CS88 – Computational Structures in Data Science

• Deeper understanding of the computing concepts introduced in c8
 – Hands-on experience => Foundational Concept
 – How would you create what you use in c8?

• Extend your understanding of the structure of computation
 – What is involved in interpreting the code you write?
 – Deeper CS Concepts: Recursion, Objects, Classes, Higher-order Functions, Declarative programming, …
 – Managing complexity in creating larger software systems through composition

• Create complete (and fun) applications
• In a data-centric approach
How does CS88 relate to CS61A?

- **CS61A**
 - Intro Programming & Tools
 - CS Concepts and Techniques

- **CS/INFO/STAT c8**
 - Intro Programming
 - Statistics Concepts in a Computational Approach

- **CS88**
 - Working w/ Data
 - CS Concepts and Techniques
 - & Tools

Units
Course Structure

• 1 Lecture + 1 Lab/Discussion on Monday (!!!)
• Lecture introduces concepts (quickly)
• Lab provides concrete detail hands-on
• Homework (10) cements your understanding
 – Out Monday, Due Sunday
• Projects (3) put your understanding to work in building complete applications
 – Maps
 – Hangman
 – Open Projects!

• Readings: http://composingprograms.com
 – Same as cs61a
CS88 Team - uGSIs

Dr. Gerald Friedland
fractor@eecs.berkeley.edu

Gunjan Baid
cunjjan_baid@berkeley.edu

Lab Assistants (hopefully):
Anthony Xian, Rana Zee Maneri, Dashiell Brennan Stander, Pransu Dash, Niharika Jain, David Sang-chul Nahm, Minsu Kim, Caleb Casimir Chuck, Daniel Bernard Ricciardelli, Rena Chen, Kenneth Kao, Andrew Tan, Peter Yuan, Arman Madani, Calvin Dong, Erik Sanders Cheng
CS88 Team - me

• Dr. Gerald Friedland (fractor@berkeley.edu)
 – 424 Saturdai Daj Hall (CITRIS)
 – http://www.gerald-friedland.org
 – Office hours: Fr 1-2 @ 424 SDH
 – Before/after class

• Adjunct Assistant Professor, EECS UC Berkeley
• Principal Data Scientist, Lawrence Livermore National Labs
CS88 Team - me

Projects you might want to check out:

- http://mmcommons.org
 - Work with 100M images, 1M videos in your own Amazon instance.

- http://www.teachingprivacy.org
 - Creating teaching materials informing about data over sharing.
Course Culture

• Learning
• Community
• Respect
• Collaboration
• Peer Instruction
Piazza for \{ask,answer\}ing questions
Pro-student Grading Policies

- **EPA**
 - Rewards good behavior
 - **Effort**
 - E.g., Office hours, doing every single lab, hw, reading Piazza pages
 - **Participation**
 - E.g., Raising hand in lec or discussion, asking questions on Piazza
 - **Altruism**
 - E.g., helping other students in lab, answering questions on Piazza

- **You have 2 “Slip Days”**
 - You use them to extend due date, 1 slip day for 1 day extension
 - You can use them one at a time or all at once or in any combination
 - They follow you around when you pair up (you are counted individually)
 - E.g., A has 2, B has 0. Project is late by 1 day. A uses 1, B is 1 day late
Abstraction

• Detail removal
 – “The act or process of leaving out of consideration one or more properties of a complex object so as to attend to others.”

• Generalization
 – “The process of formulating general concepts by abstracting common properties of instances”

Henri Matisse “Naked Blue IV”
WHERE ARE YOU FROM?
Where are you from?

Possible Answers:

• China
• California
• The Bay Area
• San Mateo
• 1947 Center Street, Berkeley, CA
• 37.8693° N, 122.2696° W

All correct but different levels of abstraction!
Abstraction gone wrong!

I Can Stalk U
Raising awareness about inadvertent information sharing

What are people really saying in their tweets?

denisluque: I am currently nearby http://maps.google.com/?q=-23.6193333333,-46.5506666667
1 minute ago · Map Location · View Tweet · View Picture · Reply to denisluque

nikosofficiel: I am currently nearby http://maps.google.com/?q=48.8699833333,2.3282833333
5 minutes ago · Map Location · View Tweet · View Picture · Reply to nikosofficiel

dilmanarede: I am currently nearby http://maps.google.com/?q=-15.7878333333,-47.8291666667
7 minutes ago · Map Location · View Tweet · View Picture · Reply to dilmanarede

downtownvan: I am currently nearby http://maps.google.com/?q=49.2833333333,-123.1198333333
10 minutes ago · Map Location · View Tweet · View Picture · Reply to downtownvan

MommaGooseBC: I am currently nearby 15745 Weaver Lake Rd Maple Grove MN

Links
- Mayhemic Labs
- PaulDotCom
- SANS ISC
- Electronic Frontier Foundation
- Center for Democracy & Technology

How did you find me?

Did you know that a lot of smart phones encode the location of where pictures are taken? Anyone who has a copy can access this information.
Detail Removal (in Data Science)

- You’ll want to look at only the interesting data, leave out the details, zoom in/out…

- Abstraction is the idea that you focus on the essence, the cleanest way to map the messy real world to one you can build

- Experts are often brought in to know what to remove and what to keep!

The London Underground 1928 Map & the 1933 map by Harry Beck.
The Power of Abstraction, Everywhere!

• Examples:
 – Functions (e.g., \(\sin x\))
 – Hiring contractors
 – Application Programming Interfaces (APIs)
 – Technology (e.g., cars)

• Amazing things are built when these layer
 – And the abstraction layers are getting deeper by the day!

We only need to worry about the interface, or specification, or contract NOT how (or by whom) it’s built

Above the abstraction line

Abstraction Barrier (Interface)
(the interface, or specification, or contract)

Below the abstraction line

This is where / how / when / by whom it is actually built, which is done according to the interface, specification, or contract.
Abstraction in CS: Data Type

- What’s this?

Real (or ideal) world

42

Computer representation
Data Types and Operations

• Set of elements
 – with some internal representation
 – E.g. Integers, Floats, Booleans, Strings, …

• Set of operations on elements of the type
 – e.g. +, *, -, /, %, //, **
 – ==, <, >, <=, >=

• Properties
 – Commutative, Associative, …, Closure (???)

• Expressions are valid well-defined sets of operations on elements that produce a value of a type
Questions

• What’s the difference between ‘==‘ and ‘=‘?
Lab and HW this week

• Lab will get you to where you have a *program development environment*
 – Even on your computer

• HW will give practice and explain subtleties of types, operators, and expressions
 – In a program development environment